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Abstract—When multimodal AI systems increasingly utilize
diverse data sources to achieve advanced understanding and
interaction, they inevitably collect vast amounts of sensitive
information, thus highlighting the urgent need for robust privacy
safeguards, especially as these technologies expand into fields
like healthcare, finance, and education. Existing research on
data privacy in AI, encompassing adversarial training-based
models, differential privacy-based models, and differentially pri-
vate transform-based models, often neglects the inter-correlation
inherent in multi-sensor data. To address this gap, we propose the
differentiAl Private OnLine muLti-sensor data predictiOn model
(APOLLO), which simultaneously considers intra-correlation and
inter-correlation to enhance privacy protection while maintaining
predictive performance. Under the proposed APOLLO frame-
work, we design two implementations: APOLLO I, which ensures
ϵ-differential privacy by adding Laplace noise to each corre-
lated data segment, and APOLLO II, which applies additional
noise to make the concatenated multi-sensor data realize ϵ-
differential privacy. Furthermore, we conduct the theoretical
analysis to reveal the relationship between performance influence
and the privacy budget, providing guidelines for noise addition
with the aim of achieving certified performance. Comprehensive
experiments validate the effectiveness of the APOLLO model,
establishing a new standard for privacy-preserving multi-sensor
data prediction.

Index Terms—Multi-sensor Data Analysis, Differential Privacy,
Correlated Data Privacy

I. INTRODUCTION

Nowadays, when plentiful advanced AI systems, such as
multimodal large-scale language models (mLLMs), leverage
the multimodal data (e.g., text, audio, and video) to achieve
unprecedented levels of understanding and interaction [1], they
unavoidably collect and analyze large amounts of sensitive
information [2]. Especially, as the deployment of these tech-
nologies expands across various field, from healthcare [3] and
finance [4] to education [5], robust privacy safeguards are es-
sential to maintain public trust and compliance with regulatory
standards. Therefore, it is indispensable to investigate multi-
sensor data privacy protection for pursing the responsible
advancement of AI models.

So far, there have been a large number of research works
to study the data privacy protection in AI models. We can
broadly categorize these works into three classes, including (i)

Corresponding Author: Zhipeng Cai

adversarial training-based models [6], (ii) differential privacy-
based models [7], and (iii) differentially private transform-
based models [8]. Compared to adversarial training-based
models, differential privacy-based models can provide a the-
oretical data privacy guarantee with a rigorous mathematical
definition. While, differentially private transform-based mod-
els have an advantage over the naive differential privacy-
based models because the side-effect of correlation on multi-
sensor data on the trade-off between data privacy and model
utility can be eliminated after data transformation. To be
specific, these differentially private transform-based models
take into account intra-correlation (e.g., temporal correlation)
to design the differential privacy mechanism for data privacy
protection. However, in terms of multi-sensor data privacy
protection, the existing works overlook the side-effect of inter-
correlation (e.g., the correlation between video and audio),
which is a main kind of information during processing multi-
sensor heterogeneous data. What’s worse, no work carries out
a theoretical analysis of the influence of learning performance
while using differential privacy mechanism.

To fill this blank, we propose a differentiAl Private OnLine
muLti-sensor data predictiOn model (APOLLO) by consider-
ing the intra-correlation and inter-correlation simultaneously
to protect multi-sensor data privacy while maintaining the
performance of online multi-sensor data prediction. Under
this APOLLO framework, we further consider two kinds of
implementations for the differential privacy mechanism, called
APOLLO I and APOLLO II. In APOLLO I, we add Laplace
noise to make each correlated data satisfy ϵ-differential pri-
vacy. In APOLLO II, we apply additional Laplace noise to
make the concatenated multi-sensor data satisfy ϵ-differential
privacy. Furthermore, we theoretically analyze the perfor-
mance influence (including robustness and bias) while using
additional Laplace noise for privacy preservation. Finally,
comprehensive experiments are conducted to demonstrate the
effectiveness of our proposed APOLLO model. Our multifold
contributions are addressed as follows.

• This is the first work to propose a differential privacy
online multi-sensor data prediction model by concurrently
considering the intra-correlation and inter-correlation
among multi-sensor heterogeneous data.

• Under a proposed APOLLO framework, we devise two



implementation options, called APOLLO I and APOLLO
II, to realize the practical and feasible data privacy while
using the online multi-sensor data prediction in the real-
world applications.

• We provide rigorous theorems to reveal the relationship
between performance influence and the privacy budget,
which can be used as guidelines of adding noise for
privacy protection with a aim of having a certified per-
formance.

• We conduct real-data experiments to prove the effective-
ness of our proposed APOLLO model and the correctness
of our proposed theorems.

The rest of this paper is organized as follows. We briefly
summarize the related works in Section II, present prelim-
inaries in Section III, and formulate our APOLLO model
in Section IV, Then, we conduct the differential privacy
analysis of our proposed APOLLO model in Section V and
propose rigorous theoretical analysis of robustness and bias
of our proposed APOLLO I and APOLLO II in Section VI.
Furthermore, we conduct real-data experiments on APOLLO
and analyze all the results in Section VII. Finally, we end up
with a conclusion in Section VIII.

II. RELATED WORKS

In this section, we summarize the related works on multi-
sensor data prediction and review the current mainstream
privacy-preserving learning approaches.

A. Multi-sensor Data Prediction Approaches

Multi-sensor data prediction approaches generally fall into
two categories, including feature-level fusion models and
prediction-level fusion models. (i) Feature-level fusion mod-
els transform multi-sensor data into a same feature space and
then fuse these features into a joint feature representation
to train a predictor, which take advantage of correlations
across sensor data [9], [10]. Technically, simple methods like
concatenation of raw sensor data features have been applied
in the previous works for feature fusion. Besides, more ad-
vanced feature normalization, imputation, and dimensionality
reduction techniques have also been investigated to further
improve the prediction performance. (ii) Prediction-level fu-
sion models combine the outputs of multiple predictors (e.g.,
regression trees and neural networks) using ensemble methods,
in which each predictor is built on data from an individual
sensor [11], [12]. Compared to the feature-level fusion models,
the prediction-level models avoid the challenges of feature
fusion, but will lack the utilization of the correlations between
sensor data in the process of prediction.

B. Privacy-Preserving Learning Approaches

Currently, the major techniques employed in machine learn-
ing for data privacy protection include adversarial training
models, differential privacy approaches, and differentially pri-
vate transform methods. (i) Adversarial training-based mod-
els generate adversarial examples, viewed as noise-disturbed
data, to defend against inference attacks on both unimodal

data [6] and multimodal data [13]. While adversarial training
has appeal as a convenient and efficient technique for use in
privacy-preserving learning systems, it suffers from an inabil-
ity to ensure provable privacy protections. (ii) Differential
privacy-based approaches use additional noise based on dif-
ferential privacy mechanisms to ensure the theoretical guaran-
tee of data privacy protection [14]. However, compared to non-
correlated data, the additional noise should be enlarged for cor-
related data to keep the same degree of differential privacy pro-
tection [15], which sacrifices the performance (e.g., accuracy)
of learning models. (iii) Differentially private transform-
based methods convert correlated data into an uncorrelated
domain before applying differential privacy [8], where the
side-effect of adding larger noise on learning performance can
be eliminated due to the disappearance of data correlation after
data transformation. Unfortunately, these existing transform-
based methods can only be used to transform the homogeneous
data with intra-correlation (that refers to correlation within
a singular data instance, like temporal patterns in video or
location dependence in a trajectory) into uncorrelated data
domain but cannot be applied to the heterogeneous multimodal
data with inter-correlation (that means correlation between
separate data instances, such as relationships between two text
documents or an audio segment and video clip). What’s worse,
all these existing privacy-preserving learning approaches did
not conduct a theoretical analysis of the influence of learning
performance while considering privacy protection.

In this paper, we propose a differentiAl Private OnLine
muLti-sensor data predictiOn model (APOLLO) to achieve
privacy enhanced online multi-sensor data prediction with
certified performance influence. The novelty of our proposed
APOLLO model lies in two aspects: (i) we take into account
intra-correlation and inter-correlation among multi-sensor data
to design additional noise for differential privacy protection;
(ii) we theoretically investigate the influence of additional
noise used in differential privacy on the learning performance.

III. PRELIMINARIES

In this section, we introduce the basics of differential
privacy and the correlated differential privacy.

Differential privacy (DP) is a robust privacy concept em-
ployed to safeguard the disclosure of individual data during
computations. In simpler terms, it asserts that the likelihood
of any differentially private output remains relatively stable
even if noise is added into the original input. This constraint
restricts the amount of information that the output can expose
about any specific individual. ϵ-differential privacy is shown
in Definition 1.

Definition 1: (ϵ-Differential Privacy) A randomized mech-
anism, M (U → R), satisfies ϵ-differential privacy, if for any
two adjacent inputs u, u′ ∈ U , there is

Pr[M(u)] ≤ eϵ Pr [M (u′)] , (1)

where ϵ is a positive real number and quantifies information
leakage.



In order to realize differential privacy, a randomized mech-
anism, M, can be constructed by a Laplace mechanism
based on any real-value function f [16]. With respect to
f , the global sensitivity Sf is defined as the maximum
absolute distance between any two adjacent inputs in U , (i.e.
Sf = supu,u′∈U |f(u)− f(u′)|). The Laplace mechanism for
differential privacy is presented in Definition 2.

Definition 2: (Laplace Mechanism) The randomized mech-
anism, M, which satisfies ϵ-differential privacy for function
f , can be obtained via additive Laplace noise as

M(u) = f(u) + Lap (0, Sf/ϵ) , (2)

in which Lap(0, Sf/ϵ) is the Laplace distribution.
However, the vulnerability of current differential privacy

mechanisms to data correlation was illustrated in [17]. The
data correlation can be treated as a kind of side-channel
information for attacks. Thus, the additional Laplace noise
should be enlarged to eliminate the side effect of correlation
for keeping the same differential privacy protection degree.
To this end, the authors in [17] proposed a novel generalized
Laplace mechanism presented in Definition 3 to offer privacy
guarantees for correlated data.

Definition 3: (Generalized Laplace Mechanism) A random-
ized mechanism, M, which satisfies ϵ-differential privacy for
any real-value function f , can be obtained via additive Laplace
noise as

M(u) = f(u) + Lap

(
0,

(1 + C)Sf

ϵ

)
, (3)

in which C ∈ [0, 1] represents the correlation coefficient
between input u with other data in the same dataset.

Besides, one significant property of differential privacy is
its resilience to post-processing [18]. This property asserts
that a differentially private output remains privacy-preserving
even when subjected to arbitrary transformations using data-
independent functions, thereby preserving its privacy guaran-
tees. This post-processing property is described in Definition 4.

Definition 4: (Post-Processing Property) Suppose a ran-
domized function M satifies ϵ-differential privacy and g is
an arbitrary mapping from the set of possible outputs to an
arbitrary set. Then,

E(g(M(u))) ≤ eϵE(g(M(u′))), (4)

where the expectation E is taken over the randomness in M.

IV. APOLLO

Typically, service providers offer numerous online artificial
intelligence (AI) services that utilize multi-sensor data collec-
tion. The data flow of online multi-sensor data prediction is
shown in Fig. 1, where the multi-sensor data are collected from
the users’ device side and then the collected multiple sensor
data are applied to realize the multi-sensor data prediction on
the semi-honest server. Unfortunately, there is a risk of unau-
thorized interception of the transmitted data, potentially lead-
ing to privacy leakage [19]. Fortunately, previous research [20]

has demonstrated the efficacy of the differential privacy mech-
anism for privacy protection in online AI services. Inspired
by these works, we propose a differentiAl Private OnLine
muLti-sensor data predictiOn model (APOLLO) to safeguard
the privacy of these multi-sensor data prior to their transmis-
sion. In APOLLO model, differential privacy mechanism is
executed on the users’ device side to generate the privacy-
preserving multi-sensor data, which will be transmitted to the
server side for the final prediction. Our proposed APOLLO
model can help users avoid privacy leakage caused by attackers
who can leverage the eavesdropped multi-sensor data during
transmission to infer the users’ sensitive information via some
effective deep learning attack models. The simplified data flow
of our proposed APOLLO model is presented in Fig. 2.

58/7/23

Data Flow in the Online Multi-sensor Data Prediction

Semi-honest Service Provider

User

McStay A. Emotional AI and EdTech: serving the public good?[J]. Learning, Media and Technology, 2020, 45(3): 270-283.

Marcos S, García Peñalvo F J, Vázquez Ingelmo A. Emotional AI in Healthcare: A pilot architecture proposal to merge 
emotion recognition tools[C]//Ninth International Conference on Technological Ecosystems for Enhancing Multiculturality 
(TEEM'21). 2021: 342-349.

Multi-Sensor Data

Fig. 1. Data Flow of Online Multi-Sensor Data Prediction

26/3/24

Data Flow in the Online Multi-sensor Data Prediction

Semi-honest Service Provider

User

Multi-Sensor Data
+ Laplace Noise

+ Laplace Noise

+ Laplace Noise

Fig. 2. Data Flow of Our APOLLO

Different from the previous differential private learning
models, in order to realize privacy enhanced online multi-
sensor data prediction, we consider both intra-correlation and
inter-correlation among multi-sensor data in the design of
additional Laplace noise to ensure the fulfillment of the differ-
ential privacy guarantee. Assume that there are total P types of
data, and we denote the p-th time-series data as (x1

p, · · · , xT
p ),

where T represents the total time duration. Without loss of
generality, we utilize the p-th data at time t, denoted as xt

p,
as an example for defining both intra-correlation and inter-
correlation.

Building upon the concept of traditional temporal correla-
tion, we define intra-correlation as below.

Definition 5: (Intra-Correlation) The intra-correlation of xt
p



can be computed using the cosine distance, i.e.,

[cintra]
t
p =

∣∣∣∣∣ xt
p · xt+1

p

||xt
p||||xt+1

p ||

∣∣∣∣∣ , (5)

where t ∈ [1, T ] and [cintra]
t
p ∈ [0, 1].

Inspired by the definition of multiple correlation coeffi-
cient [21], we use the P types of data at time t, (xt

1, · · · , xt
P),

to define the inter-correlation as follows.
Definition 6: (Inter-Correlation) The inter-correlation can

be calculated as:

[cinter]
t
p =

√
|Cov(M t

P×P)|
|Cov([M t

P×P ]
−1)|

, (6)

where M t
P×P represents a P × P covariance matrix,

[M t
P×P ]

−1 represents the inverse of the covariance ma-
trix, |Cov(M t

P×P)| denotes the determinant of M t
P×P , and

|Cov([M t
P×P ]

−1)| denotes the determinant of [M t
P×P ]

−1.
Each element mt

ij(i, j ∈ [1,P]) in this covariance matrix
M t

P×P is the covariance between the i-th data at time t (i.e.,
xt
i) and the j-th data at time t (i.e., xt

j), which can be computed
below:

mt
ij =

(xt
i − x̄t

i) · (xt
j − x̄t

j)

size(xt
i)

, (7)

where x̄t
i is the mean of xt

i, x̄
t
j is the mean of x̄t

j , and size(xt
i)

is the size of xt
i.

When considering the correlation among data, according to
Definition 3, we should generate the privacy-preserving data
x̃t
p as:

x̃t
p = xt

p + Lap

(
0,

(1 + Ct
p)S

t
p

ϵ

)
, (8)

where St
p represents the global sensitivity of xt

p and Ct
p

denotes the final correlation coefficient, which is equal to
max{[cintra]tp, [cinter]

t
p} to eliminate the side influence of

correlation on differential privacy protection [17].
Furthermore, we continue to investigate how the additional

Laplace noise affects the multi-sensor data prediction per-
formance. We define the multi-sensor data prediction model
as a function F , that maps inputs to a label from the set
K = {1, · · · ,K}, representing all possible labels. Let xt =
[xt

1, · · · , xt
P ] denote the concatenated multi-sensor data at time

t, with label k. Typically, the multi-sensor data prediction
model transform the input data xt into a vector of scores
denoted as y(xt) = (y1(x

t), · · · , yK(xt)). Here, each score
yi(x

t) is constrained to the range [0, 1], and the sum of all
scores for a given input is equal to 1, i.e.,

∑K
i=1 yi(x

t) = 1.
The scoring function y is employed to interpret these scores as
a probability distribution across the labels, and the prediction
model F selects the label with the highest probability for its
final output. For example, if yk(x

t) > max
i:i ̸=k

yi(x
t), we can

make sure that the label of xt is k.
In the following, we define two metrics, including robust-

ness measurement and performance bias to study the influence
of additional Laplace noise on learning performance. In terms

of the model robustness, according to [22], we should make
sure that a small change in the input does not alter the scores so
much as to change the predicted label. Inspired by this idea, we
give the definition of robustness measurement in Definition 7.

Definition 7: (Robustness Measurement) When we apply
an additional noise α to the input data xt for the multi-
sensor data prediction with the score function y, the robustness
measurement R can be defined as:

R =
E(yk(xt + α))

E
(
max
i:i ̸=k

yi(xt + α)

) . (9)

According to Definition 7, we can know that R ∈ [0, inf).

If R > 1 (i.e., E (yk(x
t + α)) > E

(
max
i:i̸=k

yi(x
t + α)

)
), the

multi-sensor data prediction model is robust; otherwise, the
multi-sensor data prediction model is not robust. Also, a larger
R means a higher robustness of model.

Additionally, we can use the bias of scoring to measure
the influence of additional noise on learning model perfor-
mance [23]. In light of this, we define the performance bias
in Definition 8.

Definition 8: (Performance Bias) If we add a noise α into
the input data xt for the multi-sensor data prediction with
the score function y, we can define the bias of scoring B as
follows.

B = E
([

y(xt + α)− y(xt)
]2)

. (10)

From Definition 8, we can see that B ∈ [0, 1] since y ∈ [0, 1],
and a larger B indicates a higher performance bias.

In all, we can realize ϵ-differential privacy for the correlated
data xt

p by using additional Laplace noise Lap
(
0,

(1+Ct
p)S

t
p

ϵ

)
,

shown in Eq. (8). Moreover, we want to conduct a compre-
hensive investigation about the influence of additional noise
α = Lap

(
0,

(1+Ct
p)S

t
p

ϵ

)
on the multi-sensor data prediction

model’s robustness and bias. To be specific, our objective is
to address two fundamental inquiries:

• What is the impact of privacy budget on the robustness
of the multi-sensor data prediction model?

• How does privacy budget affect the bias of the multi-
sensor data prediction?

In the context of online multi-sensor data prediction, users
have two methods available for transmitting data to the server
side for prediction. These methods include (i) transmitting
multi-sensor raw data and (ii) transmitting multi-sensor data
features. In our discussion, we have focused on the first option
for problem formulation, but it’s important to note that the
problem formulation is equally applicable to the second option.

V. DIFFERENTIAL PRIVACY ANALYSIS

In this section, we elaborate on a rigorous privacy analysis
for the correlated data and the multi-sensor data prediction
model.

As shown in Eq. (8), we can add Laplace noise
Lap

(
0,

(1+Ct
p)S

t
p

ϵ

)
to the correlated data xt

p to obtain the



privacy-preserving correlated data x̃t
p based on differential

privacy while considering correlation among multi-sensor data.
In Theorem 1, we give the privacy analysis for the correlated
data xt

p.

Theorem 1: Given the Laplace noise Lap
(
0,

(1+Ct
p)S

t
p

ϵ

)
added into any one correlated data xt

p, the disturbed correlated
data x̃t

p meets ϵ-differential privacy.
Proof 1: According to [17], we denote QSt

p = (1+Ct
p)S

t
p

as the correlated global sensitivity of the correlated data xt
p.

Let Pr[·] be the Laplace distribution [24]. Accordingly, there
is

ln
Pr[xt

p]

Pr[x̃t
p]

= ln

ϵ
2QSt

p
e
− ϵ

QSt
p
|xt

p|

ϵ
2QSt

p
e
− ϵ

QSt
p
|x̃t

p|

=
ϵ

QSt
p

(|x̃t
p| − |xt

p|) ≤ ϵ.

(11)

Eq. (11) means that the disturbed correlated data x̃t
p meets

ϵ-differential privacy.
In the multi-sensor data prediction process, we should con-

catenate multi-sensor data for the final prediction. Thus, when
xt
p is disturbed to be x̃t

p for privacy protection, the original
concatnated multi-sensor data xt will become the perturbed
concatenated multi-sensor data x̃t. In Theorem 2, we further
show the differential privacy analysis for the concatnated
multi-sensor data x̃t based on Theorem 1.

Theorem 2: When we use Laplace noise Lap
(
0,

(1+Ct
p)S

t
p

ϵ

)
to make one disturbed correlated data x̃t

p satisfy ϵ-differential
privacy, the perturbed concatnated multi-sensor data x̃t, which
is generated by combining the disturbed correlated data x̃t

p

with the other (P − 1) clean correlated data, will meet
ϵSt

(1+Ct
p)S

t
p

-differential privacy.
Proof 2: Similar to the proof of Theorem 1, let Pr[·] be the

Laplace distribution. Accordingly, we have

ln
Pr[xt]

Pr[x̃t]
= ln

ϵ
2QSt

p
e
− ϵ

QSt
p
|xt|

ϵ
2QSt

p
e
− ϵ

QSt
p
|x̃t|

=
ϵ

QSt
p

(|x̃t| − |xt|) ≤ ϵSt

(1 + Ct
p)S

t
p

,

(12)

where QSt
p = (1 + Ct

p)S
t
p as the correlated global sensitivity

of the correlated data xt
p and St is the global sensitivity of

the concatenated multi-sensor data xt. Eq. (12) infers that the
perturbed concatnated multi-sensor data x̃t satisfies ϵSt

(1+Ct
p)S

t
p

-
differential privacy.

Through Theorem 1 and Theorem 2, we can get two conclu-
sions: (i) when the condition St ≤ (1+Ct

p)S
t
p is satisfied, the

data privacy protection degree will increase after multi-sensor
data concatenation operation. and (ii) if St > (1+Ct

p)S
t
p, the

concatenation operation will bring the decrease of the data
privacy protection degree.

So far, we provide a rigorous privacy analysis for the
correlated data and the concatenated multi-sensor data based

on the situation when we use additional Laplace noise to
make one kind of data meet ϵ-differential privacy. However,
more generally, according to Theorem 1, we can add Laplace
noise Lap

(
0,

(1+Ct
i )S

t
i

ϵ

)
(i ∈ [1, · · · ,P]) to the corresponding

data xt
i to ensure every kind of data meets ϵ-differential

privacy for a privacy-preserving data transmission. When using
different magnitude of noises for different kinds of data, it
is hard for us to do the differential privacy analysis for the
concatenated multi-sensor data. Therefore, in this article, we
increase the Laplace noise from Lap

(
0,

(1+Ct
i )S

t
i

ϵ

)
to the

same Lap

(
0,

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i

ϵ

)
to ensure that the differen-

tial privacy budget for each correlated data xt
i is equal or less

than ϵ, which means that the privacy protection degree will
not be decreased. Then, in Theorem 3, we further present the
privacy analysis for the concatenated multi-sensor data under
this situation.

Theorem 3: If we add Lap

(
0,

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i

ϵ

)
to each

corrected data x̃t
i(i ∈ [1, · · · ,P]) for differential privacy

protection, the perturbed concatenated multi-sensor data x̃t

will satisfy ϵSt

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i
-differential privacy.

Proof 3: Let Pr[·] be the Laplace distribution. Then, we
have

ln
Pr[xt]

Pr[x̃t]
= ln

ϵ
2 max

i∈[1,··· ,P]
(1+Ct

i )S
t
i
e
− ϵ

max
i∈[1,··· ,P]

(1+Ct
i
)St

i
|xt|

ϵ
2 max

i∈[1,··· ,P]
(1+Ct

i )S
t
i
e
− ϵ

max
i∈[1,··· ,P]

(1+Ct
i
)St

i
|x̃t|

=
ϵ

max
i∈[1,··· ,P]

(1 + Ct
i )S

t
i

(|x̃t| − |xt|)

≤ ϵSt

max
i∈[1,··· ,P]

(1 + Ct
i )S

t
i

.

(13)
Eq. (13) suggests that the perturbed concatnated multi-sensor
data x̃t meets ϵSt

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i
-differential privacy.

Moreover, we think about how to use Laplace noise for each
type of data xt

i(i ∈ [1, · · · ,P]) to guarantee that the perturbed
concatenated multi-sensor data x̃t meets ϵ-differential privacy.
Similarly, according to Theorem 1, we can add the same
Laplace Lap

(
0, St

ϵ

)
to each xt

i(i ∈ [1, · · · ,P]) to make

each xt
i(i ∈ [1, · · · ,P]) meet (1+Ct

i )S
t
i ϵ

St -differential privacy.
Then, we give Theorem 4 to show why this implementation of
Laplace noise mechanism on each data can make the perturbed
concatenated multi-sensor data x̃t meet ϵ-differential privacy.

Theorem 4: When add the same Laplace Lap
(
0, St

ϵ

)
to

each xt
i(i ∈ [1, · · · ,P]) to each xt

i(i ∈ [1, · · · ,P]) for dif-
ferential privacy protection, the perturbed concatenated multi-
sensor data x̃t will satisfy ϵ-differential privacy.

Proof 4: Let Pr[·] be the Laplace distribution. Accordingly,



there is

ln
Pr[xt]

Pr[x̃t]
= ln

ϵ
2St e

− ϵ
St |x

t|

ϵ
2St e

− ϵ
St |x̃t|

=
ϵ

St
(|x̃t| − |xt|)

≤ ϵ.

(14)

Eq. (14) shows that the perturbed concatnated multi-sensor
data x̃t satisfies ϵ-differential privacy.

Finally, we use Corollary 1 to prove that the disturbed score
function of the multi-sensor model y(x̃t) satisfies ϵ-differential
privacy if the perturbed concatenated multi-sensor data x̃t

meets ϵ-differential privacy.
Corollary 1: When the perturbed concatenated multi-sensor

data x̃t meets ϵ-differential privacy, the disturbed score func-
tion of the multi-sensor model y(x̃t) will satisfy ϵ-differential
privacy as well.

Proof 5: Based on the post-processing property of differen-
tial privacy in Definition 4 and Theorem 4, we can obtain that
the disturbed score function of the multi-sensor model y(x̃t)
satisfies ϵ-differential privacy.

VI. THEORETICAL ANALYSIS OF APOLLO MODEL

Our proposed APOLLO model realizes the privacy-
preserving multi-sensor data prediction by implementing dif-
ferential privacy mechanism on the multi-sensor correlated
data. In this work, we consider two kinds of implementations
for the differential privacy mechanism, called APOLLO I and
APOLLO II. The APOLLO I is proposed based on Theorem 3,
where we add the same Laplace noise to each correlated data in
order to make the privacy budget for each correlated data equal
to or less than ϵ. While, the APOLLO II is presented based
on Theorem 4, where we apply the same additional Laplace
noise to each correlated data so as to make the concatenated
multi-sensor data satisfy ϵ-differential privacy. Theorem 3 and
Theorem 4 have been given in Section V to finish the rigorous
privacy analysis on APOLLO I and APOLLO II, respectively.
In the following, we further thoroughly analyze APOLLO
I and APOLLO II about the inter-influence between the
utilization of Laplace noise and multi-sensor data prediction
performance (i.e., robustness and bias).

A. APOLLO I

In APOLLO, we can add the Laplace noise

Lap

(
0,

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i

ϵ

)
to each correlated data

xt
i(i ∈ [1, · · · ,P]) to ensure that the differential privacy

budget for each correlated data is equal or less than ϵ.
Then, according to Theorem 3, the disturbed concatenated
multi-sensor data x̃t will uphold ϵSt

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i
-differential

privacy. Moreover, Corollary 1 infers that the perturbed
score function y(x̃t) of the multi-sensor model will also
meet ϵSt

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i
-differential privacy. According to the

aforementioned conclusions, we elaborate on the theoretical
analysis of APOLLO I.

1) Privacy Budget v.s. Robustness: We use (xt+α) instead
of x̃t to represent the disturbed concatenated multi-sensor
data for clear presentation. When the perturbed score function
satisfies ϵSt

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i
-differential privacy, from [22], we

can get

E
(
yk(x

t)
)
≤ e

ϵSt

max
i∈[1,··· ,P]

(1+Ct
i
)St

i E
(
(yk(x

t + α)
)
; (15)

E
(
yi(x

t + α)
)
≤ e

ϵSt

max
i∈[1,··· ,P]

(1+Ct
i
)St

i E
(
(yi(x

t)
)
, (i ̸= k).

(16)
Eq. (15) gives a lower-bound on E ((yk(x

t + α)) and Eq. (16)
gives a upper-bound on max

i:i̸=k
E (yi(x

t + α)). Then, according

to Eq. (15) and Eq. (16), we have

E (yk(x
t))

E ((yk(xt + α))
×
E
(
max
i:i ̸=k

yi(x
t + α)

)
E
(
(max
i:i ̸=k

yi(xt)

) ≤ e

2ϵSt

max
i∈[1,··· ,P]

(1+Ct
i
)St

i
.

(17)
Subsequently, we define one numerical property of the multi-
sensor data prediction model implemented on the original
multi-sensor data as:

Ro =
E (yk(x

t))

E
(
(max
i:i̸=k

yi(xt)

) . (18)

Based on Eq. (9) and Eq. (18), we can rewrite Eq. (17) as

ϵ ≥
max

i∈[1,··· ,P]
(1 + Ct

i )S
t
i

2St
ln(

Ro

R
). (19)

From Eq. (19), we can obtain Theorem 5
Theorem 5: The viable span of the privacy budget expands

as the model robustness increases.
We can also rewrite Eq (19) as

R ≥ Ro

e

2ϵSt

max
i∈[1,··· ,P]

(1+Ct
i
)St

i

(20)

Based on Eq. (20), we can get Theorem 6.
Theorem 6: The possibility of the model being robust

increases with the increase of the privacy budget.
Furthermore, we show an exact robustness condition in

Theorem 7.
Theorem 7: Let F be a multi-sensor data prediction model

with a score function y. We apply the Laplace noise α =

Lap

(
0,

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i

ϵ

)
to each input data with label k.

If there is

Ro ≥ e

2ϵSt

max
i∈[1,··· ,P]

(1+Ct
i
)St

i
, (21)

F is robust to the additional noise α applied on each input
data.

Proof 6: When Eq. (21) is satisfied, according to Eq. (19),
we can compute R ≥ 1, which suggests that the model F is
robust according to Definition 7.



2) Privacy Budget v.s. Bias: We will use Lemma 1 and
Lemma 2 [25] for analyzing the influence of Laplace noise

α = Lap

(
0,

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i

ϵ

)
on model bias.

Lemma 1: The expectation of Laplace noise α = Lap(0, λ)
is

E (Lap(0, λ)) = 0.

Lemma 2: The expectation of square Laplace noise α2 is
equal to

E(α2) = E(α) + Var(α) = 2λ2.

Since xt is independent with the Laplace noise α =

Lap

(
0,

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i

ϵ

)
in the calculation of the data-

independent function y, we can calculate the performance bias
according to Lemma 1, Lemma 2, and Eq. (10) as below:

B = E
([

y(xt + α)− y(xt)
]2)

= E
([

y(xt) + y(α)− y(xt)
]2)

= E
(
[y(α)]

2
)

= E(α2)

=

max
i∈[1,··· ,P]

2(1 + Ct
i )

2St
i
2

ϵ2
.

(22)

According to Eq. (22), we can propose Theorem 8.
Theorem 8: The bias of multi-sensor data prediction perfor-

mance increases with the decrease of the privacy budget.
Moreover, we can rewrite Eq. (22) as

ϵ =

√√√√ max
i∈[1,··· ,P]

2(1 + Ct
i )

2St
i
2

B
. (23)

Based on Eq. (23), we can obtain Theorem 9.
Theorem 9: The privacy budget can be reduced when there

is a willingness to accept a greater model performance bias.

B. APOLLO II

We propose APOLLO II according to Theorem 4. To be
specific, we can add the same Laplace noise Lap

(
0, St

ϵ

)
to

each xt
i(i ∈ [1, · · · ,P]) for differential privacy protection to

make the perturbed concatenated multi-sensor data x̃t satisfy
ϵ-differential privacy. Subsequently, based on Corollary 1, we
can obtain that the perturbed score function of the multi-sensor
model y(x̃t) also satisfies ϵ-differential privacy. According to
the aforementioned conclusions, we continue to elaborate on
the theoretical analysis of APOLLO II.

1) Privacy Budget v.s. Robustness: Following the similar
analysis procedures from Eq. (15) to Eq. (20), we can easily
obtain

ϵ ≥ 1

2
ln(

Ro

R
); (24)

and
R ≥ Ro

e2ϵ
. (25)

From Eq. (24) and Eq. (25), we can get the same con-
clusions as Theorem 5 and Theorem 6. Besides, according to
Eq. (24), we can obtain a robustness condition in Theorem 10.

Theorem 10: Let F be a multi-sensor data prediction
model with a score function y. We apply the Laplace noise
α = Lap

(
0, St

ϵ

)
to each input data with label k to make the

concatenated multi-sensor data achieve ϵ-differential privacy.
If we have

Ro =
E (yk(x

t))

E
(
(max
i:i ̸=k

yi(xt)

) ≥ e2ϵ, (26)

F is robust to the additional noise α applied on each input
data.

Proof 7: If the input xt
p satisfies ϵ-differential priacy, we can

get Eq. (25), which can be written as R ≥ Ro

e2ϵ . Then, once
Eq. (26) is satisfied, we can obtain R ≥ 1, which indicates
that the model F is robust according to Definition 7.

2) Privacy Budget v.s. Bias: Similar to the analysis in
Subsection VI-A2, we can compute the performance bias when
using Laplace noise α = Lap

(
0, St

ϵ

)
as below.

B = E
([

y(xt + α)− y(xt)
]2)

= E
([

y(xt) + y(α)− y(xt)
]2)

= E
(
[y(α)]

2
)

= E(α2)

=
2(St)

2

ϵ2
.

(27)

Eq. (27) can be written as Eq. (28).

ϵ =

√
2

B
St. (28)

Based on Eq. (27) and Eq. (28), we can get the same
conclusions as Theorem 8 and Theorem 9.

VII. EXPERIMENTS

In this section, we first introduce our experiment settings
and then present comprehensive experimental results. These
experimental results can be used to demonstrate the effective-
ness of the proposed APOLLO model, including APOLLO I
and APOLLO II.

A. Experimental Settings
The datasets, baselines, performance metrics, network ar-

chitectures, and hyper-parameter settings are described below.
1) Datasets: Our experiments employ two benchmark

datasets, CMU-MOSI (MOSI) and CMU-MOSEI (MOSEI),
for multi-sensor sentiment analysis. The MOSI dataset com-
prises 2189 subjective YouTube monologues, each with video,
audio, and text expressing opinions on topics like movies.
An integer sentiment score in [−3, 3] manually tags each
monologue, where −3 and 3 indicate the strongest negative
and positive sentiments, respectively. As an enhancement over
MOSI, the MOSEI dataset includes 23453 annotated video
clips featuring more utterances, speakers, and subject diversity.



2) Baseline: MISA [26], Self-MM [27], and MMIM [28]
represent the current state-of-the-art models on both the MOSI
and MOSEI datasets for multi-sensor sentiment analysis. Ac-
cordingly, we utilize MISA, Self-MM, and MMIM as baseline
models to benchmark performance.

3) Performance Metrics: Sentiment prediction on MOSI
and MOSEI can be formulated as a 7-class classification task
using integer labels in [-3,3], evaluated by the seven-class ac-
curacy metric (Acc-7) [29]. Additionally, two binary accuracy
(Acc-2) approaches are adoptable for measuring sentiment
prediction performance. The first one is Negative/Non-negative
(Neg/Non-neg) classification, where non-negative labels are
indicated by non-negative scores [30]. The second one is calcu-
lated based on Negative/Positive (Neg/Pos) classes, with neg-
ative and positive classes denoted by corresponding negative
and positive scores [31]. In summary, our experiments employ
Acc-2 (Neg/Non-neg), F1 (Neg/Non-neg), Acc-2 (Neg/Pos),
F1 (Neg/Pos), and Acc-7 as evaluation metrics.

4) APOLLO’s Framework: Our APOLLO model is com-
posed of two parts, including a differential privacy mechanism
deployed on the users’ side and a multi-sensor data prediction
model on the semi-honest server side.

The multi-sensor data prediction model is composed of data
pre-processing, autoencoding feature learning, and sentiment
prediction modules. The neural network architectures of these
three modules are described below. (i) Data Pre-processing.
Facial Action Coding System (FACS) [32] extracts facial
expression features encompassing facial action units and pose.
An acoustic analysis framework (COVAREP) [33] obtains
acoustic features including 12 MFCCs, pitch, voiced/unvoiced
elements, glottal source parameters, and other emotion/tone
related aspects. The pre-trained BERT [34] serves as the
feature extractor for textual utterances. Therefore, the visual
feature dimension is dv = 47, the acoustic feature dimension
is da = 74, and the textual feature dimension is dl = 784.
To align the multimodal features for encoding, we utilize one
Fully-Connected Layer with ReLU activation function and one
Normalization Layer to embed these features into the same
dimensional space. (ii) Autoencoding Feature Learning.
Within this autoencoder module, the encoder E uses one
Fully-Connected Layer with Sigmoid activation function to
extract the data features, and the decoder D employs one
Fully-Connected Layer for reconstruction, avoiding learning
unrepresentative encodings. Specifically, three separate au-
toencoders learn the feature representations for video, audio,
and text data. (iii) Sentiment Prediction. In the prediction
function G, one Transformer Encoder Layer is used for
transformation, one Fully-Connected Layer with a Dropout
Layer plus a ReLU activation function is used for fusion, and
one Fully-Connected Layer is used to map all representations
into one dimension for final prediction.

The differential privacy mechanism is applied in the users’
side according to the design of APOLLO I and APOLLO II.
For APOLLO I, as mentioned in subsection VI-A, Laplace

noise Lap

(
0,

max
i∈[1,··· ,P]

(1+Ct
i )S

t
i

ϵ

)
is applied to each modality

data to ensure that the differential privacy budget for each
modality data is equal or less than ϵ. For APOLLO II, as
stated in subsection VI-B, we can add the same Laplace noise
Lap

(
0, St

ϵ

)
to each modality data for differential privacy

protection to make the perturbed concatenated multi-sensor
data satisfy ϵ-differential privacy.

5) Hyperparameter Settings: In the differential privacy
mechanism, the global sensitivity of each modality data St

i ,
the correlation for each modality data Ct

i , and the global
sensitivity of the concatenated multi-sensor data St should be
dynamically calculated in the training process. We train the
multi-sensor data prediction model with the batch size 128, the
training epochs 500, and the learning rate 1e−4. The proposed
model is trained on Ubuntu OS system using 8 Nividia A100
GPU. More details of the proposed APOLLO model can be
found at https://github.com/ahahnut/APOLLO.

B. Evaluation on Our APOLLO Model

In our privacy enhanced model, we should set one system
parameters ϵ. The value of ϵ, which is the so-called “pri-
vacy budget”, indicates the degree of privacy protection. A
smaller ϵ implies a higher degree of data privacy protection.
First of all, we implement our proposed APOLLO I with
ϵ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 on MOSI dataset, and
we present the evaluation results in Fig. 3. From Fig. 3, we
can see that all metric results of our proposed APOLLO I
is comparable to that of the three baselines, which indicates
that our proposed APOLLO I can keep the utility of multi-
sensor data prediction model and achieve privacy protection
for multi-sensor data. Moreover, the proposed APOLLO II
with the same various ϵ on MOSI is applied on MOSI
dataset, and these evaluation results are shown in Fig. 4. In
Fig. 4, the comparison results can be used to demonstrate
that our proposed APOLLO II maintains the performance of
the multi-sensor data prediction while realizing data privacy
preservation. Furthermore, we run our proposed APOLLO I
and APOLLO II on MOSEI datset, whose evaluation results
are shown in Fig. 5 and Fig. 6, respectively. By observing
all metric results, we can obtain the same conclusion that our
proposed APOLLO model can achieve the trade-off between
the multi-sensor data privacy protection and the utility of
multi-sensor data prediction model.
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Fig. 3. Performance Comparison on MOSI Dataset (Baselines v.s. APOLLO
I with Various ϵ)
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Fig. 5. Performance Comparison on MOSEI Dataset (Baselines v.s. APOLLO
I with Various ϵ)

C. Evaluation Results (Privacy Budget v.s. Robustness)

During the training process of implementing APOLLO I
with various ϵ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 on MOSI
dataset, we can compute the corresponding robustness values
of our proposed model. We use these robustness values to draw
Fig. 7(a). From Fig. 7(a), it can be seen that the robustness of
APOLLO I has an ascent trend with the increase of the privacy
budget, which is consistent with Theorem 6. Additionally, we
calculate three more groups of robustness values, including
(i) the robustness of APOLLO I with various ϵ on MOSEI
dataset, (ii) the robustness of APOLLO II with various ϵ on
MOSI dataset, (iii) the robustness of APOLLO II with various
ϵ on MOSEI dataset, shown in Fig. 7. According to the results
in Fig. 7, we can conclude that the possibility of the model
being robust increases with the increase of the privacy budget.
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Fig. 6. Performance Comparison on MOSEI Dataset (Baselines v.s. APOLLO
II with Various ϵ)
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Fig. 7. Relationship between Robustness and Privacy Budget.

D. Evaluation Results (Privacy Budget v.s. Bias)

Similarly, the bias of our proposed model can be computed
in the training process. To be specific, we obtain four groups of
bias values, including (i) the bias of APOLLO I with various
ϵ on MOSI dataset, (ii) the bias of APOLLO I with various ϵ
on MOSEI dataset, (iii) the bias of APOLLO II with various
ϵ on MOSI dataset, and (iv) the bias of APOLLO II with
various ϵ on MOSEI dataset. These four groups of bias values
are drawn in Fig 8. From Fig. 8, the bias has a descent trend
with increasing the privacy budget, which is consistent with
Theorem 8.
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Fig. 8. Relationship between Bias and Privacy Budget.

VIII. CONCLUSION

In this paper, we create a differential private online multi-
sensor data prediction model (APOLLO) to realize the privacy



enhanced multi-sensor data prediction with certified perfor-
mance influence, where we consider the intra-correlation and
the inter-correlation among multi-sensor data to design our
proposed differential privacy mechanism. Under APOLLO
framework, we design two kinds of APOLLO schemes
(APOLLO I and APOLLO II) by taking into account the
implementation ways of Laplace noise on multi-sensor data.
Then, we propose a rigorous theoretical analysis on APOLLO
I and APOLLO II to investigate the impact of privacy budget
on the robustness and bias of the multi-sensor data prediction
model. Finally, we conduct comprehensive experiments to
illustrate that our proposed APOLLO model can maintain the
performance of multi-sensor data prediction while protecting
multi-sensor data privacy, and the observations from extensive
experimental results of robustness and bias are consistent with
our proposed theorems.
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