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Abstract—The demand of sharing video streaming extremely
increases due to the proliferation of Internet of Things (IoT)
devices in recent years, and the explosive development of artificial
intelligent (AI) detection techniques has made visual privacy pro-
tection more urgent and difficult than ever before. Although
a number of approaches have been proposed, their essential
drawbacks limit the effect of visual privacy protection in real
applications. In this article, we propose a cycle vector-quantized
variational autoencoder (cycle-VQ-VAE) framework to encode
and decode the video with its extracted audio, which takes the
advantage of multiple heterogeneous data sources in the video
itself to protect individuals’ privacy. In our cycle-VQ-VAE frame-
work, a fusion mechanism is designed to integrate the video
and its extracted audio. Particularly, the extracted audio works
as the random noise with a nonpatterned distribution, which
outperforms the noise that follows a patterned distribution for
hiding visual information in the video. Under this framework, we
design two models, including the frame-to-frame (F2F) model and
video-to-video (V2V) model, to obtain privacy-preserving video
streaming. In F2F, the video is processed as a sequence of frames;
while, in V2V, the relations between frames are utilized to deal
with the video, greatly improving the performance of privacy pro-
tection, video compression, and video reconstruction. Moreover,
the video streaming is compressed in our encoding process, which
can resist side-channel inference attack during video transmission
and reduce video transmission time. Through the real-data exper-
iments, we validate the superiority of our models (F2F and V2V)
over the existing methods in visual privacy protection, visual
quality preservation, and video transmission efficiency. The codes
of our model implementation and more experimental results are
now available at https://github.com/ahahnut/cycle-VQ-VAE.

Index Terms—Audio-visual, privacy, video streaming, vector
quantized variational autoencoder (VQ-VAE).

I. INTRODUCTION

RECENTLY, sharing video streaming has been
increasingly popular with the wide applications of

Internet of Things (IoT) devices [1]–[4], the number of
which is predicted to reach about 45 billion by 2022 [5].
In the transmission process, however, the video streaming
may be maliciously intercepted by attackers who intend to
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infer individuals’ private information from the videos using
detection/prediction approaches [6]–[13]. Meanwhile, recent
breakthroughs in deep learning accelerate the development
of machine learning-based detection techniques, such as face
detection [14]–[18] and semantic segmentation [19]–[23],
which greatly increases the risk of privacy leakage in the
video streaming. For example, from the video, attackers
are able to use these advanced machine learning models
to accomplish speech recognition [24], [25], action recog-
nition [26], [27], and other activity detection. According
to the latest Cost of a Data Breach Report proposed by
IBM and the Ponemon Institute, privacy leakage causes
property loss of millions dollars every year for individuals
or companies concerned [28]. In addition, privacy protection
has been regulated by law—on May 25, 2018, the European
Union’s new general data protection regulation (GDPR) came
into force, requiring that people should have more control
over their personal data. To this end, privacy protection
is deemed to be an indispensable component for video
sharing.

So far, a lot of research has been conducted to protect
visual privacy in various ways. Some works aim to hide (par-
tial) visual information for privacy protection [29]–[34], some
approaches achieve anonymity through disturbing the original
visual information [35]–[39], some methods protect privacy
by changing the visual style of original information [1], [40],
and some studies apply encryption methods to protect pri-
vacy in video [41]–[45]. However, the existing works still have
their limitations, which also challenges the design of effective
protection for visual privacy.

1) Random noise is added to disturb the visual information
in noise-based models, but the added noise usually
follows some patterned distributions (e.g., normal dis-
tribution), which can be utilized as prior knowledge in
attackers’ detection models to infer private information.

2) Some noise-based models are just trained to fool a cer-
tain kind of discriminative model, which cannot be used
to defend general detection models in real applications.

3) All the existing models, even the encryption-based
ones, do not fully consider the leakage of side-channel
information (e.g., traffic size) during video transmission,
leading to the vulnerability to side-channel inference
attack.

4) These previous privacy-preserving models only focus on
visual privacy in separated video frames but overlook the
temporal information (i.e., the relations between frames)
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in video streaming, resulting in the low effect of privacy
protection.

To overcome the above challenges, in this article, we pro-
pose to encode and decode video streaming with its extracted
audio to achieve visual privacy protection while maintaining
the expected visual quality and enhancing video transmission
efficiency. The extracted audio is a kind of random noise with-
out any patterned distribution, which can better disturb the
visual information as well as reduce the accuracy of mali-
cious detection, compared to the noise that follows patterned
distributions. For any video, its extracted audio cannot be gen-
erated or manipulated easily by attackers without any prior
knowledge, which ensures that the encoded video can only
be decoded by the receivers who obtain the extracted audio.
In other words, we aim to fuse multiple heterogeneous data
sources (i.e., the video and its extracted audio in this article)
to hide private visual information to defend detection attack
and side-channel inference attack simultaneously during video
transmission, which has not been addressed in the literature.

To realize our proposed design, we develop a cycle vector-
quantized variational autoencoder (cycle-VQ-VAE) framework
to accomplish the fusion of heterogeneous data sources by
employing the idea of codebook. Our framework consists
of two vector-quantized variational autoencoder (VQ-VAE)
components with one working as the encoder and the other
working as the decoder. Considering a pair of sender and
receiver in video sharing applications, this kind of cycle frame-
work can guarantee that the encoded video frame can be
properly encoded at the sender and decoded at the receiver
with high visual quality. To fuse different data sources, we
map both the video and its extracted audio into an appropriate
low-dimension space such that the codes of audio can disturb
the codebook of video and the video information can be com-
pressed effectively in the encoder. This encoding process that
has not been presented in previous works makes sure that our
framework can also be used to defend side-channel inference
attack because it changes the traffic pattern of video streaming.
Correspondingly, in the decoder, the same audio can be used to
decode the encoded video by removing the extra codes of the
audio from the disturbed codebook. Under this cycle-VQ-VAE
framework, we develop two different models, including frame-
to-frame (F2F) and video-to-video (V2V) models. In the F2F
model, we divide the video into a series of frames and recon-
struct the images in a frame-by-frame manner. In the V2V
model, we treat the video as time-series data to perform image
reconstruction taking into account the temporal information in
video. Finally, we use the AVE data set [46], two artificial
intelligent (AI) detection models, and one side-channel infer-
ence attack model to evaluate the superiority of our proposed
F2F and V2V models over the state-of-the-art schemes in
terms of visual privacy protection, visual quality preserva-
tion, and video transmission efficiency. In the following, the
contributions of this article are summarized.

1) To the best of our knowledge, this is the first work to
study the fusion of multiple heterogeneous data sources
in video streaming for privacy protection.

2) The extracted audio used in the cycle-VQ-VAE frame-
work does not follow any patterned distribution and,

thus, outperforms the works using the noise that follows
some patterned distributions (e.g., normal distribution).

3) A novel cycle-VQ-VAE framework is developed to pro-
cess video streaming, where the video and its extracted
audio can be fused properly for protecting visual pri-
vacy, preserving visual quality, and compressing video
information simultaneously.

4) The integration of video compression and encoding is
proposed to defend side-channel inference attack and
reduce video transmission overhead.

5) F2F and V2V models are designed under the cycle-VQ-
VAE framework to achieve the goal of privacy protec-
tion; especially, the V2V model exploits the temporal
information for performance enhancement in privacy
protection, video compression, and video reconstruction.

6) The real-data experimental results confirm the effec-
tiveness and the advantages of our proposed models
compared with the state of the art.

The remainder of this article is organized as follows. Related
works are briefly summarized in Section II. After introducing
preliminaries in Section III, we detail our proposed models
in Section IV. In Section V, comprehensive experiments are
conducted and analyzed. Finally, Section VI concludes this
article and discusses our future work.

II. RELATED WORKS

The state of the art about visual privacy protection is
summarized in this section.

A. Noise-Based Privacy-Preserving Models

In the existing works, the methods of protecting visual
privacy via adding noise can be classified into three main cat-
egories: 1) applying noise to disturb the feature attributes in
order to decrease the accuracy of recognition results [29]–[31];
2) using steganography algorithms to generate the stego
images to protect privacy [35]–[37]; and 3) changing the
image styles to hide the original visual information for privacy
preservation [1], [40].

Raval et al. [47] designed a perturbation mechanism that
can obtain the tradeoff between privacy and utility to protect
visual secrets based on denoising autoencoder (AE) through
the adversarial training. Brkić et al. [29] proposed to hide
some biometric attributes with noise to reduce the accuracy
of face recognition. They also proposed a conditional genera-
tive adversarial network (CGAN) to generate a human image
of full body while offering a solid level of identity protec-
tion in [48]. Uittenbogaard et al. [30] designed a framework
based on generative adversarial network (GAN) to achieve the
goal of detecting, removing, and inpainting moving objects
in multiview imagery while removing private regions that
users care about. Meng et al. [35] proposed a steganography
algorithm based on image-to-image translation using cycle-
GAN to obtain the stego images for the purse of concealment
and security in the transmission process. Tang et al. [36]
developed an automatic stegangraphic distortion framework
using GAN (named ASDL-GAN), which can be applied
to images for the enhancement of privacy preservation.
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Kim and Yang [37] proposed a privacy-preserving adversarial
protector network (termed PPAPNet), where a noise amplifier
was used to optimize noise for effective image anonymization.
Wu et al. [1] designed a method to keep video transmission
secure by using a 2-D noise matrix as the 4th channel of image
combining with a 3-channel RGB image, in which a video
frame was transformed from one style to another based on
the architecture of cycle-GAN. Chen et al. [40] also proposed
to transfer the realistic images into cartoon images based on
GAN to protect privacy to a certain extent.

B. Encryption-Based Privacy-Preserving Models

Besides, encryption-based methods are proposed to hide the
private visual information in video.

Paruchuri et al. [41] encrypted foreground video bit-
stream to hide the private information in surveillance systems.
Liu and Kong [42] obscured the human face region in
real time by encrypting the spatial chaotic map of face.
Zhang et al. [44] generated a key through a cryptographic
MAC function by using the information of the head contour
in the video frame, and the key is used in a stream cipher
to lock the head information detected pedestrians for privacy
preservation. Chu et al. [45] proposed a fast homomorphic
encryption method to encrypt the video frames for secure
video transmission.

C. Limitations of Existing Works

In the existing noise-based models, the used noise fol-
lows the normal distribution, which, however, can be utilized
as prior knowledge by attackers to mitigate the impact of
noise in their detection models and enhance the accuracy of
information prediction. Even for the encryption-based models,
all of the current works fail to fully consider privacy leakage
in the video transmission process and, thus, may be vulner-
able to the side-channel inference attack where attackers are
able to infer private information by analyzing the users’ traffic
data [10]. What is worse, recent advanced machine learning
models can achieve action recognition and activity detection
in video by exploiting the temporal information (i.e., the rela-
tions between frames) [11], [26], [27], which has not been
taken into account for privacy preservation yet. Due to the
aforementioned limitations, these existing works may not be
adequate to effectively accomplish the task of protecting visual
privacy in video.

In this article, to improve the performance of visual privacy
protection, we propose F2F and V2V models based on cycle-
VQ-VAE to encode and decode the video by employing the
video’s extracted audio and temporal information. The tech-
nical advantages and innovations of our models lie in several
aspects.

1) The audio of a video is extracted as the noise, whose
distribution is random and unknown. Thus, applying
such extracted audio can disturb the visual information
more effectively, compared to using the noise following
patterned distribution (e.g., normal distribution).

2) Different from the noise that follows patterned distribu-
tion, the extracted audio is unique and meaningful for its

TABLE I
ABBREVIATIONS

corresponding video, so that it guarantees that the noise
cannot be generated or manipulated easily and can be
used to decode the encoded video only by the receivers
who have the audio.

3) The process of video compression is incorporated into
our cycle-VQ-VAE framework, improving the resistance
to the side-channel inference attack during transmission
and reducing the video transmission time.

4) The relations between frames are utilized in V2V by
integrating cycle-VQ-VAE with the RNN layers, mak-
ing privacy protection, video compression, and video
reconstruction more efficient.

III. PRELIMINARIES

VQ-VAE is a state-of-the-art image generation model with
the convolutional layers’ architecture, in which all features of
video frames are mapped into the codebook [49]. With the
help of codebook, high-dimension data can be mapped into a
low-dimension space and also can be reconstructed from the
mapped low-dimension space.

The VQ-VAE model consists of one encoder E and one
decoder D, in which E and D share a common codebook c.
The encoder is used to embed the original observations x into
feature maps that should be close to the codebook vector c,
and the decoder is used to recover the original observations
‖x−D(c)‖2

2 using the codebook vector c. During this process,
performance loss includes: 1) the codebook loss, which is the
distance between the selected codebook c and the outputs of
the encoder and is computed by ‖sg[E(x)]−c‖2

2 with the code-
book variables and 2) the communication loss, which is the
distance between the outputs of the encoder and the selected
codebook c and is calculated via ‖sg[c] − E(x)‖2

2 with the
encoder weights, where E(x) is the output of the encoder, sg is
the stop-gradient to learn the code mappings for the codebook
generation, and β is a hyperparameter to control the reluctance
to change the codebook c to the encoder output. The objective
function of VQ-VAE is expressed in the following:

L = ‖x − D(c)‖2
2 + ‖sg[E(x)] − c‖2

2 + β‖sg[c] − E(x)‖2
2. (1)

All abbreviations used in this article are listed in Table I.
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Fig. 1. Architecture of our cycle-VQ-VAE model.

IV. METHODOLOGY

In this section, we propose a cycle-VQ-VAE framework,
based on which we design two novel models to generate a
privacy-preserving video.

A. Cycle-VQ-VAE Framework

The architecture of our cycle-VQ-VAE framework is shown
in Fig. 1. This framework consists of one encoder and
one decoder, where the encoder is designed to generate the
encoded video frames for privacy protection, the decoder is
designed to recover the encoded video frames, and the process
of mapping video is based on VQ-VAE.

In the encoder of our cycle-VQ-VAE framework, the video
frames and its extracted audio that are of high-dimension data
are mapped into a low-dimension space. The low-dimension
representations of the audio are treated as the extra codes
and added into the original codebook of video frames. Then,
the disturbed codebook is used to generate the encoded video
for privacy-preserving transmission. In the decoder, the low-
dimension representations of the audio are removed from the
disturbed codebook, and the original video frames can be
reconstructed from the clean codebook.

It is worth mentioning that mapping high-dimension data
into a low-dimension space is not a trivial issue. If the
information in the codebook of video frames is much more
than that in the codebook of audio in the low-dimension
space, the codes of audio are not enough to disturb the code-
book of video frames; if the information in the codebook
of video frames is much less than that in the codebook of
audio in the low-dimension space, it will be hard to extract
the extra codes from the disturbed codebook of video frames

to reconstruct the original video frames. That is, it is neces-
sary to explore an appropriate low-dimension space, in which
the codebook of video frames can be effectively disturbed
using the codebook of its extracted audio. In this article, we
do comprehensive experiments by adjusting the dimension
of codebook in the training process until we find a proper
low-dimension space such that the encoded video frame recon-
structed by the disturbed codebook is hardly detected by AI
detection models, and the decoded video frame reconstructed
by the clean codebook is similar to the original video frame.

Under our proposed cycle-VQ-VAE framework, an F2F
model and a V2V model are developed. Especially, by uti-
lizing the relations between video frames, V2V obtains an
enhanced performance of privacy protection, video compres-
sion, and video reconstruction. The details of F2F and V2V
models are demonstrated in Section IV-B and Section IV-C,
respectively.

B. Frame-to-Frame (F2F) Model

1) Encoder: The encoder in the F2F model includes one
encoder module, one decoder module, and one codebook cv

a as
shown in Fig. 2. We encode the video frames with its extracted
audio a to generate the encoded video va for protecting visual
privacy. In other words, we use the low-dimension represen-
tations of audio as the extra codes ca to disturb the codebook
of the video frames cv.

In the encoder module, we map both the video frames v
and the audio a into the low-dimension space represented by
codebook cv

a, which is performed by using the stop-gradient
sg [49]. Let E(vv

a|(v, a)) be the expectancy of obtaining the
encoded video with the video frames and the audio as inputs.
According to the VQ-VAE mechanism, we can compute the
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Fig. 2. Process of encoding (adding ca into codebook cv
a).

Fig. 3. Process of decoding (removing ca from codebook cv
a).

codebook loss in (2) and the commitment loss in (3)

LE1 = ∥
∥sg[E(va|(v, a))] − cv

a

∥
∥2

2. (2)

LE2 = ∥
∥sg

[

cv
a

] − E(va|(v, a))
∥
∥2

2, (3)

where || · ||22 denotes the squared L2-norm.
In the decoder module, we generate the encoded video

frames va from the disturbed codebook cv
a, in which the

reconstruction loss is computed by

LD1 = ∥
∥va − D

(

cv
a

)∥
∥2

2. (4)

To sum up, the loss function of the encoder in F2F model
can be expressed in

LTotal1 = LE1 + βeLE2 + LD1 (5)

where βe is a hyperparameter to control the reluctance to
change the codebook cv

a to the encoded video va.
2) Decoder: At the side of receivers, the encoded video

and the audio are high-dimension data. In order to obtain
the original video, we first map the received data into the
low-dimension space so as to clean the disturbed codebook
of the encoded video in the low-dimension space. Then, we
reconstruct the decoded video in the high-dimension space.

Accordingly, the decoder in the F2F model also has three
components, including one encoder module, one decoder mod-
ule, and one codebook cv as shown in Fig. 3. In the decoder,
we use the same audio a to decode the encoded video frames
va with an aim that the decoded video frames should be simi-
lar to the original video frames v. To this end, we remove the
extra codes ca from the disturbed codebook cv

a to obtain the
clean codebook cv of video frames.

In the encoder module, we map both the encoded video
frames va and the audio a into low-dimension space and
learn the mappings through the stop-gradient sg operation. Let
(cv

a|a) denote the disturbed codebook cv
a, in which the codes of

audio a are removed and E(v|(va, a)) denote the expectancy
of obtaining decoded video frames with the encoded video
frames and the audio being the inputs. The codebook loss and
the commitment loss in this VQ-VAE are calculated by (6)
and (7), respectively

LE3 = ∥
∥sg[E(v|(va, a))] − (

cv
a|a

)∥
∥2

2. (6)

LE4 = ∥
∥sg

[

cv
a|a

] − E(v|(va, a))
∥
∥

2
2. (7)

In the decoder module, we produce the decoded video
frames from the clean codebook such that the decoded video
frames are similar to the original video frames v. We remove
the codes of audio ca from the disturbed codebook cv

a. The
reconstruction loss is shown as follows:

LD2 = ∥
∥v − D

(

cv
a|a

)∥
∥2

2. (8)

The loss function of the decoder in the F2F model can be
calculated by (9)

LTotal2 = LE3 + βdLE4 + LD2 (9)

where βd is a hyperparameter to control the reluctance to
change the clean codebook cv to the original video v.

In summary, the loss function of our proposed F2F model
is as follows:

LTotal = LTotal1 + LTotal2. (10)

We aim to minimize (10) in the training process, where LTotal1
is minimized to obtain the encoded video frames using its
extracted audio and LTotal2 is minimized to decode the encoded
video frames using the same audio such that the decoded video
is similar to the original video.

C. Video-to-Video (V2V) Model

In the F2F model, we divide the video into a series of frames
and reconstruct the images in a frame by frame manner without
considering the relations between frames. Motivated by the
idea of video reconstruction in [50]–[53], we propose a V2V
model with the help of RNN layers, in which the temporal
information (i.e., the relations between frames) in the video
is used for the performance improvement in protecting visual
privacy, compressing video, and reconstructing video.

The architectures of the encoder and decoder in the V2V
model are presented in Fig. 4(a) and (b), respectively. The dif-
ference between our F2F and V2V models is that we deploy a
recurrent layer after each convolutional neural network (CNN)
block. A hidden state h in each recurrent layer (denoted by
function f ) is an output from the previous time step, i.e., for
the ith CNN block, the output is oi = hi = f (v, hi−1), where
hi is the hidden state in the ith CNN block and hi−1 is the
hidden state in the (i − 1)th CNN block.

V. EXPERIMENTS

In order to validate the effectiveness of our F2F and
V2V models, extensive experiments are conducted to quali-
tatively and quantitatively evaluate the results of video encod-
ing/decoding, the performance of privacy protection, and the
efficiency of video transmission.
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Fig. 4. V2V model. (a) Encoder architecture of V2V. (b) Decoder architecture
of V2V.

A. Experiment Settings

1) Data Set: In our experiments, we extract the video
frames and the audio from 200 videos in the AVE data set [46]
to form the video data set and audio data set.

2) AI Detection Models for Video Frames: To illustrate that
in our F2F and V2V models, the encoded video frames can
resist AI detection and the decoded video frames can main-
tain visual quality, we adopt two AI detection models that have
been widely used in real applications with mature technology.
One is a face detection model that can detect the human face
with a rectangle [14], and the other is the semantic segmen-
tation model that can segment the human body with a pink
color [19].

3) Side-Channel Inference Attack Model for Video
Streaming: In real applications, a video can be typically
encoded via a standard encoding method H264 [54] and then
encrypted by TLS/SSL using 128-bit AES [55] for secure
transmission. Nevertheless, the traffic pattern can be still
utilized as side-channel information to infer individuals’ activ-
ities in video streaming as the data traffic size can indicate
the existence/type of an activity, resulting in privacy leakage.
In our experiments, the attack approach of Li et al. [10]
is adopted, in which the traffic streaming is first divided
into separate parts and then statistical coefficients (including
mean, variance, skewness, and kurtosis) of each separated
traffic data are used as features to do activity recognition by
using the k-NN classification algorithm.

4) Two Baselines: We compare our proposed F2F and V2V
models with two baselines.

1) AE-Based Model: It is based on the AE architecture and
adds the noise generated from the normal distribution
into images [47] for privacy protection.

2) Style Translator-Based Model: It changes the style of
video frames to hide visual information based on the
cycle-GAN architecture [1].

All the experiment results are analyzed in
Sections V-B–V-E. In this article, video frames are presented
to illustrate the effectiveness of our F2F and V2V models.
More results of video and video frames can be found in
https://github.com/ahahnut/cycle-VQ-VAE, and you can also
create your own data sets for training using our opensource
codes.

B. Qualitative Evaluation

There are original video frames, encoded video frames, and
decoded video frames in the whole process of our cycle-VQ-
VAE framework.

1) Video Frames of F2F and V2V: In Fig. 5, we show
video frames in different phases in F2F and V2V models for
performance comparison.

For the encoded/decoded video frames generated by F2F
and V2V models, the results of face detection are presented in
Fig. 5(a) and (b), and the results of semantic segmentation are
presented in Fig. 5(d) and (e). Compared to the original video
frames, we can draw a conclusion that in F2F and V2V mod-
els, the encoded video frames lose sufficient visual information
to resist detection while the decoded video frames can recover
the lost visual information effectively for the detection task.

From Fig. 5(c) and (f), one can see that by utilizing the
relations between frames for video processing, the V2V model
outperforms the F2F model in terms of video compression and
video reconstruction. In Fig. 5(c), the encoded video frame of
V2V is harder to be recognized, and the decoded frame of V2V
is clearer for face detection. In Fig. 5(f), the encoded video
frame of V2V loses more visual information causing worse
semantic segmentation performance, and the decoded video
frame of V2V has a higher visual quality for better semantic
segmentation.

2) Encoded Video Frames: In Fig. 6(a), the encoded video
frames in F2F and V2V cannot be detected by the face detec-
tor with a rectangle, but those of the AE-based model and
the Style Translator-based model can be detected by the face
detector. From Fig. 6(c), one can see that in our F2F and
V2V models, human cannot be segmented by the semantic
segmentation model from the encoded video frames, but in
the AE-based model and the Style Translator-based model,
human body can be segmented correctly. The main reason
why our two models perform better is that the noise (i.e.,
the extracted audio) of F2F and V2V does not follow any
patterned distribution, greatly disturbs the visual information,
and reduces the detection accuracy. Besides, V2V outperforms
F2F in the video compression process due to the consideration
of the relations between frames even if they are both trained
by our proposed cycle-VQ-VAE framework.

Moreover, since the noise can be filtered from real data
by analyzing energy distribution [56], the energy distribu-
tion of the encoded video frames is drawn in Fig. 7 for
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Fig. 5. Results of face detection and semantic segmentation in F2F and V2V. (a) Face detection on F2F video frames. (b) Face detection on V2V video
frames. (c) Face detection comparison. (d) Semantic segmentation on F2F video frames. (e) Semantic segmentation on V2V video frames. (f) Semantic
segmentation comparison.

performance comparison. From Fig. 7(a), we observe that
the energy distribution of original frames looks like a val-
ley. Similarly, in Fig. 7(c) and (d), the energy distribution
of the encoded frames of the two baselines only has one
valley, which indicates that it is possible to recover the origi-
nal frames from the encoded ones by removing the patterned
noise in real applications. Differently, in Fig. 7(b) and (e), the
energy distribution of the encoded video frames of F2F and
V2V contain several valleys, which means that our extracted
audio can disturb the video information in a proper low-
dimensional space, where the audio energy can effectively
influence the energy distribution of video frames. As a result,
it becomes harder to recover the original frames from our
encoded video frames just by removing the noise, which is
consistent with the results of Fig. 5. Particularly, when com-
paring Fig. 7(b) with Fig. 7(e), we can find out that the
energy distribution of the encoded video frame in V2V is
more irregular than that of the encoded video frame in F2F
because V2V achieves a better video compression performance
by taking the relations between frames into consideration,
leading to a larger difficulty in removing the noise for
recovery.

3) Decoded Video Frames: As shown in Fig. 6(b), the
decoded video frames of the four models can be observed.
However, only the decoded video frames of our F2F and V2V
models can be detected by the face detection model with a rect-
angle. Similarly, in Fig. 6(d), only the decoded video frames
of F2F and V2V models can be segmented with a pink color
through the semantic segmentation model. It is worth men-
tioning that the decoded video frames should have satisfied
the visual quality for observation/detection in real applications.
From Fig. 6(b) and (d), we can see that our models can make

the decoded video frames maintain the expected visual qual-
ity but the two baselines fail to make it, indicating that our
models outperform the two baselines. In addition, in Fig. 6,
compared to the decoded video frames in F2F, the decoded
video frames in V2V can be better reconstructed when con-
sidering the relations between frames with respect to the video
reconstruction task.

In Fig. 8, one more same video frame is chosen to compare
our models with two baselines qualitatively for better illustrat-
ing the superiority of our models, especially the V2V model.
From Fig. 8(a), we observe that the encoded video frames in
AE-based and Style Translator-based models can be detected
by the face detection model, but the encoded video frames
in F2F and V2V models cannot be detected, which means
that our models outperform the two baselines. Especially, the
encoded video frames in the F2F model, AE-based model, and
Style Translator-based model can be more or less segmented
by the semantic segmentation model, but the encoded video
frame in the V2V model cannot be segmented, indicating that
V2V has the best performance of video compression and pri-
vacy protection. The results of Fig. 8(b) show that the decoded
video frames in the four models can be detected by the face
detection model and the semantic segmentation model, which
means that F2F and V2V models can be used in video recon-
struction. However, the decoded video frame in V2V has the
highest visual quality, illustrating the advantage of the V2V
model in video reconstruction.

C. Quantitative Evaluation

We evaluate the quantitative performance of F2F and V2V
models in terms of the average accuracies of face detection
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Fig. 6. Performance comparison for face detection and semantic segmentation. (a) Face detection on encoded video frames: Ours versus others. (b) Face
detection on decoded video frames: Ours versus others. (c) Semantic Segmentation on encoded video frames: Ours versus others. (d) Semantic segmentation
on dencoded video frames: Ours versus others.

TABLE II
ACCURACY OF FACE DETECTION

and semantic segmentation and present the results in Tables II
and III.

1) Video Frames of F2F and V2V: Compared to the aver-
age accuracy of face detection on the original video frames
(i.e., 96.67% in Table II), this accuracy is only 6.00% for the
encoded video and can reach 80.00% for the decoded video
in F2F model, and this accuracy decreases to 0.00% for the
encoded video and can be recovered back to 96.67% for the
decoded video in the V2V model. As shown in Table III,
the average accuracy of the semantic segmentation on original
video frames is 93.30%; by using the F2F model, the accuracy
decreases to 6.70% on the encoded video frames and achieves
73.33% on the encoded video frames; and by using the V2V
model, this accuracy is only 0.00% on the encoded video and
can reach 93.30% on the decoded video. These results illus-
trate that our F2F and V2V models can reduce the risk of
privacy leakage in the encoded video frames while success-
fully recovering the lost visual information in the decoded
video frames for real applications. In other words, our models
are effective for privacy preservation in video streaming.

TABLE III
ACCURACY OF SEMANTIC SEGMENTATION

2) Encoded Video Frames: With respect to face detection
on the encoded video frames, the average accuracies in our
F2F model, our V2V model, the AE-based model, and the
Style Translator-based model are 6.00%, 0.00%, 26.67%, and
36.67%, respectively, (see Table II). In addition, for semantic
segmentation on the encoded video frames, the average accura-
cies in our F2F model, our V2V model, the AE-based model,
and the Style Translator-based model reach 6.70%, 0.00%,
20.00%, and 36.67%, respectively, (see Table III). From the
above comparison, one can see that our F2F and V2V models
can lower detection accuracy on the encoded video frames in
face detection and semantic segmentation and, thus, perform
better than the two baselines in protecting visual privacy. This
is because for the video, our models utilize the extracted audio
that is a type of random and nonpatterned distributed noise to
blur the visual information while the two baselines use pat-
terned distributed noise. What is more, V2V can obtain a lower
detection accuracy than F2F in face detection and semantic
segmentation on the encoded video frames since more visual
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Fig. 7. Energy distribution of encoded video frame. (a) Energy distribution of original video frame (original). (b) Energy distribution of encoded video frame
[ours (F2F)]. (c) Energy distribution of encoded video frame (AE). (d) Energy distribution of encoded video frame (style translator). (e) Energy distribution
of encoded video frame [ours (V2V)].

Fig. 8. Recognition comparison for encoded video frames and decoded video frames. (a) Face detection (top) and semantic segmentation (bottom) on encoded
frames: Ours versus others. (b) Face detection (top) and semantic segmentation (bottom) on dencoded frames: Ours versus others.

information is lost in the V2V’s encoding process when taking
the relations between frames into account.

3) Decoded Video Frames: The decoded video frames are
expected to recover the lost visual information as much as
possible for further utilization. From Tables II and III, one can
see that a higher average accuracy of face detection/semantic
segmentation on the decoded video frames is achieved by our
F2F and V2V models, which means our models outperform
the two baselines in terms of the visual quality of decoded
video frames. In addition, by comparing F2F and V2V, the

decoded video frames in V2V can better be applied in face
detection and semantic segmentation tasks, which means that
considering the relations between frames in V2V is helpful
for reconstructing a high-quality video.

D. Security Analysis

In our F2F and V2V models, we can encode the video
frames with its extracted audio and decode the encoded video
frames with the same audio. The encoded video frames can:
1) defend against the detection attacks using face detection
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Fig. 9. Traffic size of original video streaming before and after encryption.

TABLE IV
RESULTS OF ACTIVITY INFERENCE

and semantic segmentation during the transmission process;
2) defend against side-channel inference attack; and 3) only
be decoded with the same audio received by the authorized
receivers, which is deeply analyzed as follows.

1) Defense Against Detection Attacks: We use two main-
stream detection models to validate that our encoded video
frames can prevent the visual information from being accu-
rately detected. As shown in Tables II and III, compared to the
two baselines, our F2F and V2V models obtain a lower average
accuracy in both face detection and semantic segmentation for
the encoded video frames. The main reason lies in the method
noise generation: in our encoded video frames, the noise (i.e.,
the extracted audio) is extracted from the video so that it
owns nonpatterned distribution and sufficient randomness to
help improve the performance of protecting visual information;
while in the two baselines, the noise is generated from pat-
terned distribution (i.e., normal distribution), which can be
used as prior knowledge for information detection. Moreover,
compared to F2F, V2V can obtain a lower accuracy and even
decrease the detection accuracy to 0.00% in both face detec-
tion and semantic segmentation for the encoded video frames.
This is because considering the relations between frames is
effective to encode the visual information of video frames.

2) Defense Against Side-Channel Inference Attack: The
prior work [10] reveals that the traffic pattern of video stream-
ing can be used as side-channel information to infer human’s
activities during the transmission even if the video streaming
is encrypted by TLS/SSL. Fig. 9 shows that the traffic pattern
of original video streaming and that of the encrypted original
video streaming have a pretty high similarity.

To investigate the performance of video encoding meth-
ods in resisting the side-channel inference attack, the encoded
video streaming is generated using the encoded video frames.
The traffic size of the original video streaming, the encoded
video streaming of F2F, the encoded video streaming of V2V,
and the encoded video steaming of two baselines are presented
in Fig. 10(a). Then, we use the side-channel inference method
in [10] to calculate the accuracy of activity inference in video
streaming and report the results in Table IV, where the aver-
age accuracy of activity inference is 95.8% in the original

video streaming. The average accuracy of activity inference is
95.60% in AE encoded video streaming and 94.50% in Style
Translator encoded video streaming, indicating that these two
encoding methods cannot prevent side-channel information
leakage. Notably, the average accuracy of activity inference
is reduced to 42.86% in the encoded video streaming of F2F
and even reduced to 0.00% in the encoded video streaming
of V2V. The reason is that the encoding process of our F2F
and V2V model can effectively smooth the traffic pattern. In
particular, the relations between frames are exploited for video
compression in V2V, further increasing the difficulty of traf-
fic analysis during transmission. Thus, we can conclude that
our F2F and V2V models can effectively resist side-channel
inference attack.

Moreover, experiments are conducted to compare our F2F
and V2V models with two baseline models after using the
TLS/SSL (AES 128 bit) encryption method for video transmis-
sion, traffic size is shown in Fig. 10(b), and results of activity
inference are presented in Table IV. In Fig. 10(b), the traf-
fic pattern of video streaming seems almost unchanged after
video encryption. In Table IV, the average accuracy of activity
inference is 94.80% in AE encrypted encoded video streaming,
93.70% in Style Translator encrypted encoded video stream-
ing, 41.98% in F2F encrypted encoded video streaming, and
still 0.00% in V2V encrypted encoded video streaming. These
results indicate that the encoding methods of AE and Style
Translator cannot prevent the side-channel attack even if the
encryption method is used during video transmission. On the
contrary, our encoding models outperform these two baselines
and can prevent the side-channel attack effectively.

3) Defense Against Un-Authorization: In our F2F and V2V
models, we train the same audio to encode the video frames
and decode the encoded video frames. Different from the noise
that follows certain distributions (e.g., normal distribution),
the audio extracted from its corresponding video is unique
and cannot be easily generated or manipulated. Therefore,
the video streaming can only be recovered by the authorized
receivers who have the extracted audio.

E. Transmission Efficiency Analysis

Note that the efficiency of video transmission has not yet
been incorporated into visual privacy protection by the exist-
ing works, but the consideration of transmission efficiency
is a necessary component for IoT devices and applications.
One major advantage of our cycle-VQ-VAE framework over
the state of the art is that it can achieve effective visual
privacy protection and efficient video transmission simulta-
neously. The main reason is that the encoder component in
our cycle-VQ-VAE framework leverages the extracted audio
to encode the corresponding video, in which the video actu-
ally is compressed to a reduced size, and the transmission
time can be reduced as well. On the contrary, the previous
visual privacy-preserving models (such as AE-based and Style
Translator-based models) exploit the noise to hide the original
visual content, where the additional noise increases the video
size, and the transmission time is increased. Furthermore, we
do real-data experiments and use the transmission time as a
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Fig. 10. Traffic size of encoded video frames. (a) Traffic size of video streaming before encryption: Ours versus others. (b) Traffic size of video streaming
after encryption: Ours versus others.

TABLE V
TRANSMISSION TIME AT DIFFERENT BANDWIDTHS (OURS (F2F) VERSUS OTHERS)

performance metric to illustrate the transmission efficiency of
our models during video streaming transmission in real appli-
cations. In Table V, we list the transmission time of uploading
10-s video streaming to an edge server at different network
bandwidths. Compared to the original video, the transmission
time is averagely decreased by 16.2% in our F2F model due
to the video compression in the encoding process. Even better,
the transmission time is averagely reduced by 53.4% in our
V2V model as a better video performance can be achieved by
considering the relations between frames. But the transmission
time is averagely increased by 43.8% in the AE-based model
and 9.1% in the Style Translator-based model, in which noise
is added to disturb the original visual information without
compression.

VI. CONCLUSION

In this article, we proposed an audio-visual AE framework,
named cycle-VQ-VAE. To the best of our knowledge, this
is the first work to use multisource information to gener-
ate privacy-preserving video streaming; especially, the audio
is extracted from its corresponding video and used as the
random noise to disturb the visual information. Since the
extracted audio is unique and meaningful, it cannot be gen-
erated or manipulated easily and, thus, can be used by the
authorized receivers to decode the encoded video. In addition,
we developed F2F and V2V models under the cycle-VQ-
VAE framework. The entire encoded video streaming of our
models has a more smooth traffic pattern, which can prevent
the side-channel inference attacks using traffic size analysis.
Besides, with video compression in our encoding process,

the time of video transmission can be greatly decreased. Via
extensive experiments, we demonstrated that our F2F model
can preserve the expected visual quality, reduce the risk of
visual privacy leakage, and improve the efficiency of video
transmission; especially, the V2V model outperforms the F2F
model in all evaluation metrics owing to the consideration
of the relations between frames for video compression and
reconstruction.
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