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Abstract—Multimodal sentiment analysis plays a critical role
in numerous IoT-driven applications, such as personalized smart
assistants, healthcare monitoring systems, and intelligent trans-
portation networks, where accurate interpretation of user emo-
tions is vital for enhancing service quality. However, a severe
threat of privacy leakage in the multimodal sentiment analysis
has been overlooked by previous works. To fill this gap, we pro-
pose a Differentially Private Correlated Representation Learning
(DPCRL) model to achieve privacy-preserving multimodal senti-
ment analysis by combining a correlated representation learning
scheme with a differential privacy protection scheme. Our cor-
related representation learning scheme aims to achieve heteroge-
neous multimodal data transformation to meet the requirements
of privacy-preserving multimodal sentiment analysis by learning
the correlated and uncorrelated representations, where especially,
a pre-determined correlation factor is employed to flexibly adjust
the expected correlation among the correlated representations.
The differential privacy protection scheme is used to obtain
the disturbed correlated and uncorrelated representations by
adding Laplace noise for ϵ-differential privacy. In particular, the
correlation factor can help alleviate the side-effect of the added
Laplace noise on the sentiment prediction performance. Finally,
via conducting a series of real-data experiments, we validate that
our proposed DPCRL model is superior to the state of the art
for privacy-preserving multimodal sentiment analysis.

Index Terms—Sentiment Analysis, Multimodal Systems, Rep-
resentation Learning, Differential Privacy

I. INTRODUCTION

W ITH the proliferation of smart infrastructures in IoT ap-
plications, multimodal sentiment analysis has become

increasingly important for enhancing user interactions in vari-
ous scenarios such as smart homes [1], healthcare systems [2],
and intelligent transportation [3]. Driven by advancements
in deep learning, learning-based prediction has emerged as
a promising and effective approach for realizing multimodal
sentiment analysis through the integration of multimodal data
representations extracted from raw multimedia inputs [4]–
[6]. However, in IoT contexts where devices continuously
generate sensitive user data, these extracted representations
can be exploited by malicious attackers to infer private infor-
mation (e.g., user identity, behavioral patterns, and location),
leading to significant privacy risks and potential economic
losses [7]–[10], shown in Fig. 1. This underscores the critical
need for privacy-preserving mechanisms specifically tailored
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for multimodal sentiment analysis in IoT scenarios, where
ensuring data security while maintaining system efficiency is
paramount. To address this, our work focuses on designing
robust privacy-preserving models that are applicable to real-
world IoT deployments, offering a secure foundation for
multimodal sentiment analysis.

Privacy Leakage:
User identity, Behavioral 
patterns, and Location

Smart Home Healthcare Monitoring Intelligent Transportation

Multimodal Sentiment Analysis in IoT-Driven Applications

Fig. 1. Privacy Leakage in Multimodal Sentiment Analysis in IoT-Driven
Smart Infrastructures

In order to prevent privacy leakage from learning-based
multimodal sentiment analysis methods, a number of privacy-
preserving learning algorithms have been proposed [11]–
[13]. One vein of research is based on adversarial training
to generate adversarial samples that is used as the data
disturbed by noise to defend inference attacks not only on
unimodal data [14], [15] but also on multimodal data [16]–
[18]. Although these adversarial training-based models are
widely applied to privacy-preserving learning schemes, they
fail to provide any performance guarantee of data privacy
protection. Differential privacy-based models [19], [20] have
been developed to guarantee data privacy protection by dis-
turbing the data via the addition of Laplace noise based
on differential privacy mechanisms [21]–[25]. However, it is
worth mentioning that the data correlation can be treated
as side-channel information, thus reducing the effectiveness
of differential privacy protection. As a result, for correlated
data, the additional Laplace noise used in differential privacy
mechanisms should be enlarged with the increase of data
correlation to maintain the same differential privacy protection
degree, inevitably sacrificing the learning performance (e.g.,
accuracy) [26]–[28]. Furthermore, to mitigate the impact of
data correlation on performance loss, the existing differentially
private transform-based approaches transform the correlated
homogeneous data into the corresponding uncorrelated data
domain and then implement differential privacy mechanisms
to achieve data privacy guarantee [29]–[33]. Nevertheless,
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these existing transform-based approaches can only perform
the transformation on homogeneous data with intra-correlation
(that means data correlation within a data instance, such as
temporal correlation in a video and location correlation in
a trajectory) but are not applicable to heterogeneous data
with inter-correlation [34]–[36] (that means correlation among
different data instances, such as data correlation between two
texts and data correlation between a video and an audio).
This is because the transformation schemes in the previous
works, including Discrete Fourier Transform (DFT), Wavelet
Transform (WT), and Principle Component Analysis (PCA),
can only process the correlated homogeneous data to generate
uncorrelated representations. Therefore, it is still a challenging
task to generate privacy-preserving representations of the
correlated heterogeneous multimodal data while maintaining
the performance of multimodal sentiment analysis.

Motivated by the above analysis, in this paper, we devise
a novel model, named Differentially Private Correlated
Representation Learning (DPCRL), to generate privacy-
preserving multimodal representations for multimodal senti-
ment analysis by integrating a correlated representation learn-
ing scheme and a differential privacy protection scheme.
The correlated representation learning scheme is designed as
a heterogeneous multimodal data transformation strategy to
learn the correlated and uncorrelated multimodal representa-
tions, in which a correlated factor can be pre-determined to
flexibly adjust the expected correlation among the correlated
multimodal representations. The differential privacy protection
scheme is further applied to generating the disturbed correlated
and uncorrelated representations by adding Laplace noise for
satisfying ϵ-differential privacy. More specifically, a proper
correlation factor can be set in our DPCRL model to extract the
correlated representations with a relatively lower correlation,
thus mitigating the side-effect of the additional Laplace noise
on sentiment prediction performance. Finally, we evaluate the
effectiveness of our DPCRL model on real-world datasets by
conducting comprehensive experiments. Our multifold contri-
butions are addressed as follows.

• To the best of our knowledge, this is the first work to
design privacy-preserving multimodal sentiment analysis
model.

• Our proposed DPCRL model seamlessly combines a
correlated representation learning scheme with a differen-
tial privacy protection scheme, aiming at simultaneously
ensuring ϵ-differential privacy and retaining the perfor-
mance of multimodal sentiment analysis.

• In our correlated representation learning scheme, the
heterogeneous multimodal data transformation can be
accomplished by learning the correlated and uncorre-
lated multimodal representations from multimodal data
for sentiment prediction, and the expected correlation
of correlated representations can be flexibly set via a
correlation factor.

• Comprehensive experiments are well conducted to vali-
date the advantages of our DPCRL model over the state
of the art for privacy-preserving multimodal sentiment
analysis.

The rest of this paper is organized as follows. The related
works are briefly summarized in Section II. We elaborate the
details of our model in Section III, and then conduct real-data
experiments and analyze all the results in Section IV. Finally,
we end up with a conclusion in Section V.

II. RELATED WORKS

In this section, we summarize the related works on multi-
modal sentiment analysis and review the current mainstream
privacy-preserving learning approaches.

A. Multimodal Sentiment Analysis

The current landscape of multimodal sentiment analysis
research reflects a growing interest and significant progress
in the field [37]. Researchers have increasingly recognized
the value of leveraging multiple modalities [38], [39], such
as text, audio, and video, to capture rich and nuanced ex-
pressions of sentiment [40], [41]. A variety of approaches
have been explored, ranging from traditional machine learning
techniques [42], [43] to deep learning architectures [44], [45],
each with its strengths and limitations. Recent studies have
focused on developing more sophisticated multimodal fusion
methods [46] to effectively integrate information from diverse
modalities [47]. Despite these advancements, challenges such
as multimodal alignment [48] and data heterogeneity [49] per-
sist, motivating ongoing research into novel methodologies and
solutions. These approaches can be categorized into modality
interaction-based, modality transformation-based, and modal-
ity similarity-based methods. Interaction-based methods ex-
plore dynamic interplays between modalities to utilize com-
plementary information [48], while transformation-based
approaches [50], [51] transform modalities into a common
feature space for unified analysis. Additionally, similarity-
based schemes [52] focus on modality correlations to enhance
sentiment analysis. These foundational methodologies inform
our work, where we introduce a correlation factor within
a differential privacy framework, a novel integration that
strategically manipulates modality correlations to balance data
utility and privacy in MSA, filling a specific gap not directly
addressed by existing studies.

B. Privacy-Preserving Learning Approaches

Currently, adversarial training-based models, differential
privacy-based approaches, and differentially private transform-
based methods are the mainly popular techniques used in
machine learning for data privacy protection. (i) Adversarial
training-based models are exploited to generate adversarial
samples that are taken as the data disturbed by noise to
defend learning-based inference attacks not only for unimodal
data [14], [15], [53] but also for multimodal data [17], [18].
Although the adversarial training is relatively attractive to be
employed in privacy-preserving learning schemes owing to its
convenience and efficiency, it cannot ensure a privacy protec-
tion guarantee. (ii) Differential privacy-based approaches
are proposed to provide a theoretical guarantee of data privacy
protection by adding Laplace noise based on differential

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3527864

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Kennesaw State University. Downloaded on April 14,2025 at 17:55:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, Vol. XX, No. XX 3

privacy mechanisms [22], [54]–[58]. In particular, for the cor-
related data, the added Laplace noise should be increased with
the growth of data correlation so as to ensure the theoretical
guarantee of data privacy protection [28], which however,
sacrifices the performance (e.g., accuracy) of learning models.
(iii) Differentially private transform-based methods trans-
form the correlated data into the corresponding uncorrelated
data domain and then apply differential privacy mechanisms
to preserve data privacy [29], [32], where the side-effect of
the larger Laplace noise on learning performance can be
eliminated due to the disappearance of data correlation after
data transformation. Unfortunately, these existing transform-
based methods can only be used to transform the homogeneous
data with intra-correlation into independent (uncorrelated) data
domain but cannot be applied to the heterogeneous multimodal
data with inter-correlation.

In this paper, a novel DPCRL model is proposed to ensure
differential privacy while maintaining the performance of
multimodal sentiment analysis. In DPCRL, the heterogeneous
multimodal data transformation can be achieved by learning
the correlated and uncorrelated multimodal representations,
where especially, a pre-determined correlation factor can be
used to adjust the expected correlation of the correlated
representations. More importantly, a proper correlation factor
can help mitigate the side-effect of the added Laplace noise
on sentiment prediction performance.

III. METHODOLOGY

In this section, we elaborate on the details of our proposed
DPCRL model. As shown in Fig. 2, the DPCRL model is made
up of five components, including a feature extraction module,
an encoding module, a decoding module, a differential privacy
protection module, and a privacy-preserving sentiment predic-
tion module. Firstly, a feature extraction scheme is designed
to extract features from video, audio and language modalities.
Secondly, in the encoding module, we use the correlated and
uncorrelated multimodal representation encoders to learn the
correlated and uncorrelated multimodal representations from
the extracted features, where a correlation factor is used in the
correlated multimodal representation encoders to obtain the
correlated multimodal representations. Thirdly, the decoding
module is devised to reconstruct the extracted features by de-
coding the correlated and uncorrelated representations in each
modality, which helps the encoding module avoid encoding the
unrepresentative vector in each modality. This autoencoding
architecture of the correlated representation learning actually
works as a heterogeneous multimodal data transform scheme
in DPCRL. Fourthly, a differential privacy protection scheme
is leveraged to obtain privacy-preserving representations by
adding Laplace noise to the correlated and uncorrelated rep-
resentations learned from the previous autoencoding architec-
ture. Finally, these perturbed representations are put into the
privacy-preserving sentiment prediction module to accomplish
the privacy-preserving multimodal sentiment analysis task.

For real-world implementation, the first four components
in DPCRL should be deployed on the users’ device side,
and the last one should be implemented on the server side.

When running DPCRL, the first four components are executed
on the users’ device side to generate the privacy-preserving
representations, which will be transmitted to the server side
for the final prediction using the last component. DPCRL can
help users avoid privacy leakage caused by attackers who can
leverage the eavesdropped representations during transmission
to infer the raw users’ sensitive data via some effective deep
learning attack models, such as the membership inference
attack and the inversion attack. In the following, we introduce
these five modules in DPCRL one by one.

A. Feature Extraction

Each video is segmented into utterances, each of which is a
unit of speech bounded by breaths or pauses [59]. An utterance
comprises a sequence of visual modality data denoted as
Uv ∈ RTv×dv , a sequence of acoustic modality data denoted
as Ua ∈ RTa×da , and a sequence of language modality data
denoted Ul ∈ RTl×dl , where Tm (m ∈ {v, a, l}) represents
the length of an utterance, and dm represents the number
of dimensions of the modality data. For feature extraction,
the stacked bi-directional Long Short-Term Memory scheme
(sLSTM) [60] is exploited to map Um ∈ RTm×dm into a
feature vector fm ∈ Rdh (m ∈ {v, a, l}) with dh being the
size of hidden states set in the sLTSM model:

fm = sLSTM(Um; θslstmm ), (1)

where θlstmm represents the parameters of sLSTM.

B. Encoding

In the encoding process, the visual/acoustic/language
modality data is processed by taking into account the fol-
lowing three requirements: (i) for each feature vector fm
(m ∈ {v, a, l}), its correlated and uncorrelated representations
should capture two distinctive aspects of the same modality
data; (ii) any two of the uncorrelated representations of fv , fa,
and fl should be distinctive without redundancy; and (iii) the
correlation between any two of the correlated representations
of fv , fa, and fl should be close to the correlation factor c as
much as possible.

First of all, as shown by domain separation networks [61],
each feature vector fm can be projected to two distinct types
of representations. Thus, given fm, we use the correlated
multimodal representation encoder Ec

m to extract the corre-
sponding correlated representation f cm ∈ Rdh and employ the
uncorrelated multimodal representation encoder Eu

m to capture
the corresponding uncorrelated representation fum ∈ Rdh :

f cm = Ec
m(fm; θcm, c), (2)

fum = Eu
m(fm; θum), (3)

where θcm represents the parameters of the encoder Ec
m, θum

represents the parameters of the encoder Eu
m, and c represents

an expected correlation factor that is set to obtain the corre-
lated representations with the expected correlation.

The orthogonality constraint can be used to achieve non-
redundancy between two representations. Therefore, to satisfy
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Fig. 2. The Data Flow of Our DPCRL Model

the first and the second requirements of encoding, we formu-
late the data orthogonality loss, Lenc1 :

Lenc1 =
∑

m∈{v,a,l}

||f cm
T fum||2F +

∑
m ̸=m′∈{v,a,l}

||fum
T fum′ ||2F ,

(4)
where || · ||2F is the squared Frobenius norm.

Then, inspired by the idea of [62], we use the cosine
distance to quantify the correlation between two correlated
representations. Considering the third requirement of encod-
ing, we define the data correlation loss, Lenc2 :

Lenc2 =
∑

m ̸=m′∈{v,a,l}

||f cm
T f cm′ − cI||2F , (5)

where c ∈ [0, 1] is a correlation factor that indicates the
cosine distance between two representations, and I denotes the
identity matrix. To sum up, the entire encoding loss function
Lenc is the summation of Lenc1 in Eq. (4) and Lenc2 in Eq. (5),
shown in Eq. (6).

Lenc = Lenc1 + Lenc2 . (6)

C. Decoding

Since an encoder function may output an unrepresentative
vector that cannot be recovered, we design a decoder D to
reconstruct the original feature vector by using the extracted
correlated and uncorrelated representations (i.e. f cm and fum) in
each modality. The decoder D is defined in Eq. (7) to ensure
that the encoded representations indeed represent the details
of the corresponding modality data [4], [45].

fm = D(f cm + fum; θd), (7)

where fm is the reconstructed feature vector for m ∈ {v, a, l},
and θd represents the parameters of the decoder D. In the

decoding process, the reconstruction loss, Ldec, is measured
by mean squared error as below:

Ldec =
∑

m∈{v,a,l}

||fm − fm||22
dh

, (8)

where || · ||22 denotes the squared L2-norm.
Finally, the correlated representation learning can be

achieved through the autoencoding architecture that is the
combination of the encoders and the decoders. Correspond-
ingly, the loss function of the correlated representation learning
process, LCRL, is the summation of the encoding loss Lenc

in Eq. (6) and the decoding loss Ldec in Eq. (8), i.e.,

LCRL = αLenc + βLdec, (9)

where α ∈ (0, 1] and β ∈ (0, 1] are the weights of loss
functions. We minimize LCRL to obtain the correlated and
uncorrelated multimodal representations for multimodal senti-
ment analysis.

D. Differential Privacy Protection Scheme

After obtaining the correlated and uncorrelated representa-
tions through our proposed correlated representation learning,
we implement the differential privacy mechanisms to generate
privacy-preserving representations for multimodal sentiment
analysis. To be specific, in our differential privacy protec-
tion scheme, the representations captured by our proposed
correlated representation learning and the privacy-preserving
representations are considered as the neighboring databases
in differential privacy theory. In the following, we apply
different differential privacy mechanisms to the correlated and
uncorrelated representations.
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Firstly, according to Basic Differential Privacy Mecha-
nism [63], we can calculate the perturbed uncorrelated rep-
resentation f̂um = fum + Lap

(
0, Sfum/ϵ

)
by using an additional

Laplace noise to satisfy ϵ-differential privacy, where Sfum rep-
resents the global sensitivity of the uncorrelated representation
vector fum and is equal to the difference between the maximal
and the minimal items in fum.

Theorem 1: Given the Laplace noise Lap(0, Sfum/ϵ) added
into the uncorrelated representation vector fum, the disturbed
uncorrelated representation vector f̂um satisfies ϵ-differential
privacy.

Proof 1: Let Pr[·] be a commonly designed Laplace distri-
bution [64]. Accordingly, we have

ln
Pr[fum]

Pr[f̂um]
= ln

ϵ
2Sfum

e
− ϵ

Sfum

|fum|

ϵ
2Sfum

e
− ϵ

Sfum

|f̂um|
=

ϵ

Sfum

(|f̂um| − |fum|) ≤ ϵ.

(10)
Eq. (10) shows that the disturbed uncorrelated representa-

tion vector f̂um satisfies ϵ-differential privacy.
Secondly, we use Correlated Differential Privacy Mech-

anism [65] to achieve the correlated representations’ ϵ-
differential privacy by adding Laplace noise. In this paper,
we use the non-negative cosine distance Cos(·, ·) ∈ [0, 1] to
measure the correlation among representations, where a higher
cosine distance value means a larger correlation, and a lower
cosine distance value indicates a smaller correlation. Then,
we can compute the perturbed correlated representation f̂ cm as
Eq. (11).

f̂ cm = f cm + Lap

0,
∑

m′∈{v,a,l}

Cos(f cm, f cm′)Sfcm/ϵ

 , (11)

where Sfcm is the global sensitivity of the uncorrelated repre-
sentation vector f cm and is equal to the difference between the
maximal and the minimal items in f cm, and Cos(f cm, f cm′) is
used as the correlation coefficient between f cm and f cm′ .

Theorem 2: By adding the Laplace noise

Lap

(
0,

∑
m′∈{v,a,l}

Cos(f cm, f cm′)Sfcm/ϵ

)
into the correlated

representation vector f cm, the output perturbed correlated
representation vector f̂ cm meets ϵ-differential privacy.

Proof 2: In accordance with [65], we define QSfcm =∑
m′∈{v,a,l}

Cos(f cm, f cm′)Sfcm as the correlated global sensitivity

of the correlated representation vector f cm. Similar to the
proof of Theorem 1, let Pr[·] be the Laplace distribution.
Accordingly, there is

ln
Pr[f cm]

Pr[f̂ cm]
= ln

ϵ
2QSfcm

e
− ϵ

QSfcm

|fcm|

ϵ
2QSfcm

e
− ϵ

QSfcm

|f̂cm|

=
ϵ

QSfcm

(|f̂ cm| − |f cm|) ≤ ϵ.

(12)

Eq. (12) indicates that the perturbed correlated representa-
tion vector f̂ cm meets ϵ-differential privacy.

Notably, for f̂ cm, the added Laplace noise can be lower if
the value of Cos(f cm, f cm′) is decreased, which can mitigate the

side-effect of the Laplace noise on the sentiment prediction
performance. On the other hand, as shown in Lenc2 , the
correlation between f cm and f cm′ can be adjusted by changing
the value of c in our correlated representation learning process,
which makes the generation of privacy-preserving representa-
tions more flexible.

E. Privacy-Preserving Sentiment Prediction

Following the fusion idea of [45], the outputs of the afore-
mentioned differential privacy protection scheme, including f̂ cv ,
f̂ ca , f̂ cl , f̂uv , f̂ua , and f̂ul , are fused into a joint vector f̂out ∈ Rdout

through simple concatenation. Then, the prediction function G
is applied to the privacy-preserving prediction task with f̂out
as the input:

ŷ = G(f̂out; θout), (13)

where ŷ is the predicted label vector corresponding to f̂out,
and θout denotes the parameters of the prediction function.

We use cross-entropy loss to calculate the loss of the
privacy-preserving sentiment prediction task in Eq. (14).

Ltask = − 1

n

n∑
i=0

yi · log(ŷi), (14)

in which Ltask is the prediction loss, n represents the number
of utterances in a training batch, yi is the i-th ground-truth
label and ŷi is the i-th predicted label.

Consequently, to learn the privacy-preserving correlated
and uncorrelated multimodal representations for the privacy-
preserving multimodal sentiment analysis, the overall loss
function of DPCRL, LDPCRL, should consist of the encoding
loss Lenc in Eq. (6), the decoding loss Ldec in Eq. (7), and
the privacy-preserving prediction loss Ltask in Eq. (14) as
formulated by Eq. (15).

LDPCRL = αLenc + βLdec + γLtask, (15)

where α, β, γ ∈ (0, 1] are the weights of the loss functions.
Our DPCRL model can be learnt by minimizing LDPCRL.
The specific network architectures of the encoders, Ec

m and
Eu

m, the decoder D, and the prediction function G used in the
DPCRL model are described in Section IV-A4.

IV. EXPERIMENTS

In this section, we first introduce our experiment settings
and then present comprehensive experimental results to
validate the superiority of our proposed DPCRL model over
the state of the art for privacy-preserving multimodal sentiment
analysis. The codes of our model and all experimental results
in this paper can be found at https://github.com/ahahnut/
DPCRL-for-Privacy-Preserving-Multimodel-Sentiment-Analysis.

A. Experimental Settings

The datasets, baselines, performance metrics, network ar-
chitectures, and hyper-parameter settings are described below.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3527864

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Kennesaw State University. Downloaded on April 14,2025 at 17:55:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, Vol. XX, No. XX 6

1 1.5 2 2.5 3
ε

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

-2
 (

N
eg

/N
on

-n
eg

)

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.1)

1 1.5 2 2.5 3
ε

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

-2
 (

N
eg

/N
on

-n
eg

)

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.2)

1 1.5 2 2.5 3
ε

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

-2
 (

N
eg

/N
on

-n
eg

)

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.3)

1 1.5 2 2.5 3
ε

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

-2
 (

N
eg

/N
on

-n
eg

)

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.4)

1 1.5 2 2.5 3
ε

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

-2
 (

N
eg

/N
on

-n
eg

)

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.5)
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(b) Evaluation Results of Acc-2 (Neg/Pos) on MOSI Dataset (DPCRL with Different c and ϵ and Baselines)

1 1.5 2 2.5 3
ε

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
cc

-7

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.1)

1 1.5 2 2.5 3
ε

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
cc

-7

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.2)

1 1.5 2 2.5 3
ε

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
cc

-7

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.3)

1 1.5 2 2.5 3
ε

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
cc

-7

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.4)

1 1.5 2 2.5 3
ε

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
cc

-7

MISA
Self-MM
MMIM
MISA-DP
DPCRL (c = 0.5)
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Fig. 3. Comparison Results of DPCRL with Different c on MOSI Dataset (v.s. Baselines)
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(a) Evaluation Results of Acc-2 (Neg/Non-neg) on MOSEI Dataset (DPCRL with Different c and ϵ and Baselines)
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Fig. 4. Comparison Results of DPCRL with Different c on MOSEI Dataset (v.s. Baselines)
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1) Datasets: We use two benchmark datasets in our ex-
periments for multimodal sentiment analysis. CMU-MOSI
(MOSI) dataset [66] is a collection of YouTube monologues
consisting of 2198 subjective video segments (utterances),
where speakers express their opinions on topics such as
movies. Each utterance is manually annotated with an in-
teger opinion score in [−3, 3], where −3 and 3 represent
the strongest negative and the strongest positive sentiments,
respectively. CMU-MOSEI (MOSEI) dataset [46] contains
23453 annotated video segments and is an improvement of
MOSI with a larger number of utterances and a greater variety
in samples, speakers, and topics.

2) Baseline: MISA [45], Self-MM [67] and MMIM [68]
are the currently pioneering models on both MOSI and MO-
SEI datasets for multimodal sentiment analysis. MISA with
Differential Privacy (MISA-DP) is a simple combination of
the differential privacy mechanism and MISA to obtain differ-
entially private representations for sentiment prediction while
guaranteeing privacy protection. MISA, Self-MM, MMIM, and
MISA-DP are adopted as baseline mechanisms for perfor-
mance comparison.

3) Performance Metrics: The task of sentiment prediction
on MOSI and MOSEI can be treated as a classification pro-
cess and evaluated via integer classification scores in [−3, 3]
that are so-called seven-class accuracy (Acc-7) [66]. Besides,
two approaches of computing binary accuracy (Acc-2) can
be also adopted to measure the performance of sentiment
prediction. The first one is Negative/Non-negative (Neg/Non-
neg) classification, where the non-negative labels are indicated
by non-negative classification scores [49]. The second one is
calculated based on Negative/Positive (Neg/Pos) classes, where
the negative and the positive classes are indicated by the
negative and the positive scores, respectively [69]. To sum up,
Acc-2 (Neg/Non-neg), F1 (Neg/Non-neg), Acc-2 (Neg/Pos),
F1 (Neg/Pos), and Acc-7 are used as performance metrics in
our experiments.

4) Neural Network Architectures: In our proposed DPCRL
model, the neural network architectures of the feature extrac-
tion, encoding, decoding, and sentiment prediction modules
are described below. (i) Feature Extraction. Facial Action
Coding System (FACS) [70] is applied to extract facial ex-
pression features that include facial action units and face
pose. An acoustic analysis framework (COVAREP) [71] is
employed to extract the acoustic features that contain 12 Mel-
frequency cepstral coefficients, pitch, voiced/unvoiced seg-
menting features, glottal source parameters, and other features
related to emotions and the tone of speech. The pre-trained
BERT [72] is utilized as the feature extractor for textual ut-
terance. Accordingly, the visual feature dimension is dv = 47,
the acoustic feature dimension is da = 74, and the textual
feature dimension is dl = 784. Furthermore, in order to align
the multimodal features for our encoding process, we exploit
one Fully-Connected Layer with ReLU activation function and
one Normalization Layer to embed these features into a space
with the same dimension. (ii) Encoding. The correlated multi-
modal representation encoder Ec

m is built by using one Fully-
Connected Layer with Sigmoid activation function to extract
the correlated representations. The uncorrelated multimodal

representation encoder Eu
m is designed through one Fully-

Connected Layer with Sigmoid activation function to extract
the uncorrelated representations. To be specific, there are three
encoders to learn the correlated representations and three
encoders to learn the uncorrelated representations. Although
these encoders have the same structure, their parameters are
updated differently during training process to learn correlated
and uncorrelated representations. (iii) Decoding. The decoder
D is established as one Fully-Connected Layer for recon-
struction to avoid learning unrepresentative vector of data
in the encoding process. (iv) Sentiment Prediction. In the
prediction function G, one Transformer Encoder Layer is used
for transformation, one Fully-Connected Layer with a Dropout
Layer plus a ReLU activation function is used for fusion, and
one Fully-Connected Layer is used to map all representations
into one dimension for final prediction.

5) Hyperparameter Settings: Our experiments are con-
ducted on Ubuntu OS with a Nvidia Tesla V100 GPU and
16 GB RAM. The batch size of samples for training MOSI
and MOSEI datasets are 64 and 16, respectively. The learning
rate of training is set as 10−4. The probabilities of dropout in
the dropout layer for training MOSI and MOSEI datasets are
0.5 and 0.1, respectively. Via comprehensive ablation study,
the weights of loss functions are set as α = 0.45, β = 0.1,
and γ = 0.45 for training MOSI dataset with 500 epochs,
and the weights of loss functions are set to be α = 0.35,
β = 0.3, γ = 0.35 for training MOSEI dataset with 500
epochs. Besides, we vary the correlation factor c from 0 to
1 with the step of 0.1 to illustrate the effectiveness of our
correlated representation learning model and set the privacy
budget ϵ ∈ {1.0, 1.5, 2.0, 2.5, 3.0} to evaluate our DPCRL
model.

B. Evaluation on Our DPCRL Model

In our proposed DPCRL model, there are two system
parameters, ϵ and c. The value of ϵ, which is so-called “privacy
budget”, indicates the degree of privacy protection. A smaller
ϵ implies a higher degree of data privacy protection. We
implement our DPCRL model with ϵ = 1.0, 1.5, 2.0, 2.5, 3.0
on datasets, which is reasonable and applicable in real appli-
cations for privacy protection based on the differential privacy
mechanisms. The value of c represents the expected correlation
among the learned correlated representations. A larger c im-
plies a closer correlation among the correlated representations.
In our experiments, we set c = 0.1, 0.2, 0.3, 0.4, 0.5 with
the following considerations. (i) From Table II and Table III,
the prediction performance of our correlated representation
learning scheme with c = 0.0 is worse than that of the state of
the art (MISA). Therefore, it may not be suitable to set c = 0.0
when we aim to maintain prediction performance as much as
possible while ensuring differential privacy protection. (ii) We
attempt to learn the correlated representations with a relatively
lower value of c so as to decrease the side-effect of the
additional Laplace noise on prediction performance.

In Fig. 3, we compare the Acc-2 (Neg/Non-neg) results of
our DPCRL model and the baseline models on MOSI dataset.
We take Acc-2 (Neg/Non-neg) of DPCRL with c = 0.1 as
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an example to illustrate the effectiveness of our proposed
DPCRL model: (i) By comparing the Acc-2 (Neg/Non-neg)
values, it can be found that the performance of DPCRL
is comparable to that of baselines (including MISA, Self-
MM, and MMIM), which indicates that our DPCRL model
can maintain the performance of sentiment analysis while
satisfying differential privacy guarantee. (ii) By comparing
Acc-2 (Neg/Non-neg) values of MISA-DP and DPCRL with
a same value of ϵ, we can see that the Acc-2 (Neg/Non-
neg) values of our proposed DPCRL model are much higher
than those of the baseline model MISA-DP which uses the
invariant data representations with the correlation c = 1.0.
That is, with the same privacy budget ϵ, our DPCRL model
outperforms MISA-DP from the aspect of maintaining the
sentiment prediction performance. The main reason is that
our correlated representation learning scheme used in DPCRL
can be leveraged to learn the correlated representations with
a relatively lower correlation factor, mitigating the side-effect
of the additional Laplace noise on the sentiment analysis.

For a comprehensive demonstration, we present Acc-
2 (Neg/Pos), F1 (Neg/Non-neg, Neg/Pos) and Acc-7 of
our DPCRL model and the baselines on MOSI dataset in
Fig. 3. Additionally, for MOSEI dataset, the values of Acc-
2 (Neg/Non-neg, Neg/Pos), F1 (Neg/Non-neg, Neg/Pos), and
Acc-7 of our DPCRL model and baselines are presented in
Fig. 4.

Based on the above analysis, we obtain the following critical
conclusions: (i) Our proposed DPCRL model is effective to
accomplish privacy-preserving multimodal sentiment analysis
with providing ϵ-differential privacy guarantee. (ii) By setting
a correlation factor as input, our DPCRL model can realize
heterogeneous multimodal data transformation that satisfies
our learning expectation. (iii) A smaller value of the cor-
relation factor can help reduce Laplace noise added in ϵ-
differential privacy mechanisms, mitigating the loss of pre-
diction performance. (iv) Compared with the state of the art,
our DPCRL model can effectively maintain and even enhance
the performance of sentiment prediction while ensuring ϵ-
differential privacy.

Furthermore, more experiments are conducted using an
NVIDIA V100-16GB GPU and an AMD 64-Core CPU. This
hardware configuration ensures that both our DPCRL model
and the baselines are operated under the same conditions for
a fair comparative analysis. We evaluate the computational
cost based on running time in each training epoch, memory
usage, and CPU/GPU utilization. These metrics are critical
for assessing the impact of differential privacy mechanisms
on model efficiency and resource consumption. The results are
summarized in Table I, which indicates that our DPCRL incurs
a 16.7% increase in running time compared to the fastest
baseline (MMIM), demonstrating the additional time required
for processing privacy-preserving mechanisms. The memory
usage in our proposed DPCRL is 8.3% higher than the least
memory-intensive baseline (MISA), which reflects the extra
memory is required for handling DP operations. Compared to
the baseline with the lowest CPU/GPU utilization (MISA), the
increase in CPU utilization is 11.4% and the increase in GPU
utilization is 12.5%.

TABLE I
COMPUTATIONAL COST COMPARISON AMONG DPCRL AND BASELINES

Metric MISA (Non-DP) Self-MM (Non-DP) MMIM (Non-DP) DPCRL % Increase over Best Baseline

Running Time (s) 95 s 100 s 90 s 105 s 16.7% (vs MMIM)
Memory Usage (GB) 9.6 GB 10.2 GB 10 GB 10.4 GB 8.3% (vs MISA)
CPU Utilization (%) 70% 76% 75% 78% 11.4% (vs MISA)
GPU Utilization (%) 64% 70% 68% 72% 12.5% (vs MISA)

C. Ablation Study

We firstly train our scheme by changing the correlation
factor c from 0 to 1 with the step of 0.1 to validate that c can
help achieve effective heterogeneous multimodal data transfor-
mation satisfying the requirements for multimodal sentiment
analysis. When the training process terminates, the correlation
coefficient among the trained correlated representations is
denoted by e. Since c, e ∈ [0, 1] are the cosine values, we
can calculate the angle degree, dc, corresponding to c and
the angle degree, de, corresponding to e. That is, c and dc
imply our expected data correlation, and e and de are our
trained data correlation. The difference between our expected
and trained data correlation can reflect the effectiveness of our
proposed correlated representation learning scheme. To clearly
investigate the impact of c on the performance of sentiment
prediction, we compute Acc-2 (Neg/Non-neg), F1 (Neg/Non-
neg), Acc-2 (Neg/Pos), F1 (Neg/Pos) and Acc-7 on the learned
correlated and uncorrelated representations.
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Fig. 5. The Impact of Expected Data Correlation c on Trained Data
Correlation e
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Fig. 6. The Impact of Expected Data Correlation c on Prediction Results of
CRL

Table II presents the values of c, dc, e, and de when the
correlated representation learning scheme is implemented on
MOSI dataset. By comparing these values, one can see that the
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TABLE II
EVALUATION RESULTS OF CORRELATED REPRESENTATION LEARNING SCHEME ON MOSI DATASET

Model Expected Data Correlation Trained Data Correlation Acc-2 (Neg/Non-neg, Neg/Pos) F1 (Neg/Non-neg, Neg/Pos) Acc-7

MISA [45] / / 0.7857/0.7972 0.7847/0.8092 0.4154
Self-MM [67] / / 0.783/0.8079 0.7834/0.8066 0.4244
MMIM [68] / / 0.799/0.8208 0.7984/0.8173 0.433

CRL c = 0.0, dc = 90.00◦ e = 0.0003, de = 89.82◦ 0.7653/0.7759 0.7643/0.7749 0.3965
CRL c = 0.1, dc = 84.26◦ e = 0.1183, de = 83.21◦ 0.7896/0.8003 0.7887/0.7994 0.4154
CRL c = 0.2, dc = 78.46◦ e = 0.2093, de = 77.92◦ 0.79/0.8004 0.7893/0.7997 0.4256
CRL c = 0.3, dc = 72.54◦ e = 0.3069, de = 72.13◦ 0.7915/0.8024 0.791/0.8019 0.4271
CRL c = 0.4, dc = 66.42◦ e = 0.4050, de = 66.11◦ 0.8075/0.8064 0.8072/0.8061 0.4358
CRL c = 0.5, dc = 60.00◦ e = 0.5036, de = 59.76◦ 0.8163/0.8277 0.8162/0.8276 0.446
CRL c = 0.6, dc = 53.13◦ e = 0.6035, de = 52.88◦ 0.7944/0.8 0.7941/0.8003 0.4281
CRL c = 0.7, dc = 45.57◦ e = 0.7029, de = 45.34◦ 0.794/0.7994 0.7935/0.7989 0.425
CRL c = 0.8, dc = 36.87◦ e = 0.8029, de = 36.59◦ 0.788/0.7982 0.7873/0.7979 0.422
CRL c = 0.9, dc = 25.84◦ e = 0.9023, de = 25.54◦ 0.7862/0.7979 0.7853/0.7974 0.4165
CRL c = 1.0, dc = 0.00◦ e = 0.9997, de = 1.40◦ 0.7857/0.7972 0.7847/0.7962 0.4154

TABLE III
EVALUATION RESULTS OF CORRELATED REPRESENTATION LEARNING SCHEME ON MOSEI DATASET

Model Expected Data Correlation Trained Data Correlation Acc-2 (Neg/Non-neg, Neg/Pos) F1 (Neg/Non-neg, Neg/Pos) Acc-7

MISA [45] / / 0.8173/0.844 0.8193/0.841 0.5249
Self-MM [67] / / 0.7944/0.8122 0.7995/0.825 0.5159
MMIM [68] / / 0.79/0.8223 0.7966/0.8351 0.5237

CRL c = 0.0, dc = 90.00◦ e = 0.0007, de = 89.60◦ 0.792/0.8432 0.791/0.8422 0.5242
CRL c = 0.1, dc = 84.26◦ e = 0.1034, de = 84.07◦ 0.8175/0.8454 0.8166/0.8445 0.5257
CRL c = 0.2, dc = 78.46◦ e = 0.2017, de = 78.36◦ 0.8214/0.8459 0.8207/0.8452 0.5266
CRL c = 0.3, dc = 72.54◦ e = 0.3066, de = 72.15◦ 0.8321/0.8503 0.8321/0.8498 0.527
CRL c = 0.4, dc = 66.42◦ e = 0.4052, de = 66.10◦ 0.8327/0.8542 0.8324/0.8539 0.531
CRL c = 0.5, dc = 60.00◦ e = 0.5040, de = 59.74◦ 0.8407/0.8547 0.8406/0.8546 0.539
CRL c = 0.6, dc = 53.13◦ e = 0.6034, de = 52.89◦ 0.8227/0.8498 0.8224/0.8495 0.528
CRL c = 0.7, dc = 45.57◦ e = 0.7005, de = 45.53◦ 0.8221/0.8484 0.8216/0.8479 0.526
CRL c = 0.8, dc = 36.87◦ e = 0.8004, de = 36.83◦ 0.819/0.8474 0.8183/0.8467 0.5257
CRL c = 0.9, dc = 25.84◦ e = 0.9022, de = 25.55◦ 0.8175/0.847 0.8166/0.8461 0.5255
CRL c = 1.0, dc = 0.00◦ e = 0.9996, de = 1.62◦ 0.8173/0.844 0.8163/0.843 0.5249

expected data correlation is very close to the corresponding
trained data correlation. For examples, e = 0.1183 when
c = 0.1, and e = 0.2093 when c = 0.2. For a more explicit
comparison, we plot Fig. 5(a) to examine the impact of c on e,
from which we can also observe that e is nearly equal to c. The
results of Table II and Fig. 5(a) confirm that in our correlated
representation learning scheme, the utilization of c is effective
to accomplish our expected heterogeneous multimodal data
transformation. When implementing our correlated represen-
tation learning scheme on MOSEI dataset, we can obtain the
same conclusion through Table III and Fig. 5(b).

Additionally, the multimodal representations learned from
our correlated representation learning scheme are exploited to
evaluate the performance of sentiment analysis in terms of
Acc-2 (Neg/Non-neg), F1 (Neg/Non-neg), Acc-2 (Neg/Pos),
F1 (Neg/Pos) and Acc-7. These experimental results on MOSI
dataset are presented in Table II. Take the values of Acc-
2 (Neg/Non-neg) as an example for analysis: (i) The values
of Acc-2 (Neg/Non-neg) obtained via MISA, Self-MM, and
MMIM are 0.7857, 0.783, and 0.799, respectively. While,
the value of Acc-2 (Neg/Non-neg) obtained in our correlated
representation learning scheme falls in [0.7653, 0.8163] when
the value of c varies from 0 to 1 with the step of 0.1.
Especially, when c = 0.5 (i.e., the angle degree is dc = 60◦),

the value of Acc-2 (Neg/Non-neg) reaches 0.8163. Thus,
we can conclude that our correlated representation learning
scheme and the baselines (including MISA, Self-MM, and
MMIM) have comparable performance in terms of Acc-2
(Neg/Non-neg). (ii) For our correlated representation learning
scheme, the value of Acc-2 (Neg/Non-neg) increases with
the growth of c when c ∈ [0.0, 0.5], which indicates that
the increased similarity among representations is helpful to
improve the performance of sentiment prediction. (iii) In
our correlated representation learning scheme, the value of
Acc-2 (Neg/Non-neg) gradually decreases with the growth
of c when c ∈ [0.6, 1.0], which implies that the decreased
diversity among representations degrades the performance of
sentiment prediction. (iv) The correlation factor c can be used
to balance the trade-off between representation similarity and
representation diversity for improving multimodal sentiment
analysis performance.

Similarly, by analyzing the results of F1 (Neg/Non-neg),
Acc-2 (Neg/Pos), F1 (Neg/Pos), and Acc-7 on MOSI dataset
in Table II, we can draw the same conclusions. In order to
explicitly show the impact of c on sentiment prediction, we
present the results of Acc-2 (Neg/Non-neg), F1 (Neg/Non-
neg), Acc-2 (Neg/Pos), F1 (Neg/Pos) and Acc-7 on MOSI
dataset in Fig. 6(a) for comparison. Moreover, as shown in
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Table III and Fig. 6(b), the experimental results on MOSEI
dataset can also confirm our aforementioned analysis.

Then, we present more ablation study of our correlated
representation learning model trained with the correlation
factor c = 0.5 and the default hyperparameter settings. In
Table IV and Table V, we show the results of ablation study on
MOSI dataset and MOSEI dataset, respectively. By comparing
these results, it is clear that the incorporation of the correlated
and uncorrelated multimodal representations can obtain the
best performance of the multimodal sentiment analysis, which
verifies the effectiveness of our model design.

TABLE IV
ABLATION STUDY OF CORRELATED REPRESENTATION LEARNING

SCHEME ON MOSI DATASET

Uncorrelated Representations Correlated Representations Acc-2 (Neg/Non-neg, Neg/Pos) F1 (Neg/Non-neg, Neg/Pos) Acc-7

! # 0.6407/0.6461 0.6547/0.6527 0.3145

# ! 0.7084/0.7008 0.7027/0.7034 0.3474

! ! 0.8163/0.8277 0.8162/0.8276 0.446

TABLE V
ABLATION STUDY OF CORRELATED REPRESENTATION LEARNING

SCHEME ON MOSEI DATASET

Uncorrelated Representations Correlated Representations Acc-2 (Neg/Non-neg, Neg/Pos) F1 (Neg/Non-neg, Neg/Pos) Acc-7

! # 0.7053/0.7684 0.7148/0.6827 0.4056

# ! 0.7832/0.8045 0.7796/0.7608 0.4362

! ! 0.8407/0.8547 0.8406/0.8546 0.539

V. CONCLUSION

In this paper, we propose a DPCRL model designed to
address privacy-preserving challenges in multimodal senti-
ment analysis, particularly within IoT scenarios. The DPCRL
model integrates a novel correlated representation learning
scheme with a differential privacy protection scheme, making
it suitable for IoT-driven applications such as smart assistants,
healthcare monitoring, and intelligent transportation systems.
Our DPCRL model consists of a novel correlated represen-
tation learning scheme and a differential privacy protection
scheme. The correlated representation learning scheme can
achieve heterogeneous multimodal data transformation to learn
correlated and uncorrelated representations for multimodal
sentiment prediction while reducing privacy leakage. The dif-
ferential privacy protection scheme can produce the perturbed
correlated and uncorrelated representations through inserting
Laplace noise for ϵ-differential privacy. In our DPCRL model,
a correlation factor is employed to learn the correlated rep-
resentations for mitigating the side-effect of the additional
Laplace noise on the sentiment prediction performance. Fi-
nally, the experiment results can confirm that our proposed
DPCRL model outperforms the state of the art in the perfor-
mance of multimodal sentiment prediction and data privacy
protection.
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Morency, “Multimodal sentiment analysis with word-level fusion and
reinforcement learning,” in Proceedings of the 19th ACM International
Conference on Multimodal Interaction. ACM, 2017, pp. 163–171.

[39] Y. Wang, Y. Shen, Z. Liu, P. P. Liang, A. Zadeh, and L.-P. Morency,
“Words can shift: Dynamically adjusting word representations using
nonverbal behaviors,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence. AAAI, 2019, pp. 7216–7223.

[40] M. S. Akhtar, D. S. Chauhan, D. Ghosal, S. Poria, A. Ekbal,
and P. Bhattacharyya, “Multi-task learning for multi-modal emotion
recognition and sentiment analysis,” CoRR, vol. abs/1905.05812, 2019.
[Online]. Available: http://arxiv.org/abs/1905.05812

[41] D. Ghosal, M. S. Akhtar, D. Chauhan, S. Poria, A. Ekbal, and P. Bhat-
tacharyya, “Contextual inter-modal attention for multi-modal sentiment
analysis,” in Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing. ACL, 2018, pp. 3454–3466.

[42] S. Poria, E. Cambria, and A. Gelbukh, “Deep convolutional neural
network textual features and multiple kernel learning for utterance-level
multimodal sentiment analysis,” in Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. ACL, 2015,
pp. 2539–2544.

[43] S. Poria, E. Cambria, N. Howard, G.-B. Huang, and A. Hussain, “Fusing
audio, visual and textual clues for sentiment analysis from multimodal
content,” Neurocomputing, vol. 174, pp. 50–59, 2016.

[44] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L. Morency,
“Tensor fusion network for multimodal sentiment analysis,” CoRR, vol.
abs/1707.07250, 2017. [Online]. Available: http://arxiv.org/abs/1707.
07250

[45] D. Hazarika, R. Zimmermann, and S. Poria, “Misa: Modality-invariant
and-specific representations for multimodal sentiment analysis,” in Pro-
ceedings of the 28th ACM International Conference on Multimedia.
ACM, 2020, pp. 1122–1131.

[46] A. B. Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency,
“Multimodal language analysis in the wild: Cmu-mosei dataset and
interpretable dynamic fusion graph,” in Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics. ACL, 2018,
pp. 2236–2246.

[47] D. S. Chauhan, M. S. Akhtar, A. Ekbal, and P. Bhattacharyya, “Context-
aware interactive attention for multi-modal sentiment and emotion anal-
ysis,” in Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing. ACL, 2019, pp. 5651–5661.

[48] N. Majumder, D. Hazarika, A. Gelbukh, E. Cambria, and S. Poria,
“Multimodal sentiment analysis using hierarchical fusion with context
modeling,” Knowledge-based systems, vol. 161, pp. 124–133, 2018.

[49] A. Zadeh, P. P. Liang, S. Poria, P. Vij, E. Cambria, and L.-P. Morency,
“Multi-attention recurrent network for human communication compre-
hension,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence. AAAI, 2018, pp. 5642–5649.

[50] H. Akbari, S. Karaman, S. Bhargava, B. Chen, C. Vondrick, and S.-
F. Chang, “Multi-level multimodal common semantic space for image-
phrase grounding,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 12 476–12 486.

[51] B. Zhang, H. Hu, and F. Sha, “Cross-modal and hierarchical modeling of
video and text,” in Proceedings of the european conference on computer
vision (ECCV), 2018, pp. 374–390.

[52] S. Mai, Y. Sun, and H. Hu, “Curriculum learning meets weakly su-
pervised multimodal correlation learning,” in Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing,
2022, pp. 3191–3203.

[53] Z. Cai and X. Zheng, “A private and efficient mechanism for data
uploading in smart cyber-physical systems,” IEEE Transactions on
Network Science and Engineering, vol. 7, no. 2, pp. 766–775, 2018.

[54] Z. He, L. Wang, and Z. Cai, “Clustered federated learning with adaptive
local differential privacy on heterogeneous iot data,” IEEE Internet of
Things Journal, 2023.

[55] H. Xu, Z. Cai, and W. Li, “Privacy-preserving mechanisms for multi-
label image recognition,” ACM Transactions on Knowledge Discovery
from Data (TKDD), vol. 16, no. 4, pp. 1–21, 2022.

[56] X. Zheng, L. Zhang, K. Li, and X. Zeng, “Efficient publication of dis-
tributed and overlapping graph data under differential privacy,” Tsinghua
Science and Technology, vol. 27, no. 2, pp. 235–243, 2021.

[57] W. Zhang, Z. Xie, A. M. V. V. Sai, Q. Zia, Z. He, and G. Yin, “A
local differential privacy trajectory protection method based on temporal
and spatial restrictions for staying detection,” Tsinghua Science and
Technology, vol. 29, no. 2, pp. 617–633, 2023.

[58] X. Zheng and Z. Cai, “Privacy-preserved data sharing towards multiple
parties in industrial iots,” IEEE journal on selected areas in communi-
cations, vol. 38, no. 5, pp. 968–979, 2020.

[59] D. Olson, “From utterance to text: The bias of language in speech and
writing,” Harvard Educational Review, vol. 47, pp. 257–281, 1977.

[60] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent
component analysis,” Neural computation, vol. 9, pp. 1483–1492, 1997.

[61] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain separation networks,” CoRR, vol. abs/1608.06019, 2016.
[Online]. Available: http://arxiv.org/abs/1608.06019

[62] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain
adaptation,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 30, no. 1. AAAI, 2016.

[63] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2006, pp. 486–503.

[64] T. Eltoft, T. Kim, and T.-W. Lee, “On the multivariate laplace distri-
bution,” IEEE Signal Processing Letters, vol. 13, no. 5, pp. 300–303,
2006.

[65] C. Liu, S. Chakraborty, and P. Mittal, “Dependence makes you vulnber-
able: Differential privacy under dependent tuples.” in NDSS. ISOC,
2016, pp. 21–24.

[66] A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency, “Multimodal senti-
ment intensity analysis in videos: Facial gestures and verbal messages,”
IEEE Intelligent Systems, vol. 31, pp. 82–88, 2016.

[67] W. Yu, H. Xu, Z. Yuan, and J. Wu, “Learning modality-specific
representations with self-supervised multi-task learning for multimodal
sentiment analysis,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, no. 12, 2021, pp. 10 790–10 797.

[68] W. Han, H. Chen, and S. Poria, “Improving multimodal fusion with
hierarchical mutual information maximization for multimodal sentiment
analysis,” arXiv preprint arXiv:2109.00412, 2021.

[69] Y.-H. H. Tsai, S. Bai, P. P. Liang, J. Z. Kolter, L.-P. Morency, and
R. Salakhutdinov, “Multimodal transformer for unaligned multimodal

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3527864

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Kennesaw State University. Downloaded on April 14,2025 at 17:55:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, Vol. XX, No. XX 12

language sequences,” in Proceedings of the Conference. Association for
Computational Linguistics. Meeting. NIH Public Access, 2019, p. 6558.

[70] E. L. Rosenberg and P. Ekman, What the Face Reveals: Basic and
Applied Studies of Spontaneous Expression Using the Facial Action
Coding System (FACS). Oxford University Press, 2020.

[71] G. Degottex, J. Kane, T. Drugman, T. Raitio, and S. Scherer, “Covarep-
a collaborative voice analysis repository for speech technologies,” in
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2014, pp. 960–964.

[72] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3527864

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Kennesaw State University. Downloaded on April 14,2025 at 17:55:16 UTC from IEEE Xplore.  Restrictions apply. 


