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There is no doubt that the popularity of smart devices and the development of deep learning models bring
individuals too much convenience. However, some rancorous attackers can also implement unexpected privacy
inferences on sensed data from smart devices via advanced deep-learning tools. Nonetheless, up to now, no
work has investigated the possibility of riskier overheard, referring to inferring an integral event about humans
by analyzing polyphonic audios. To this end, we propose an Audio-based integral. evenT infERence (ALTER)
model and two upgraded models (ALTER-p and ALTER-pp) to achieve the integral event inference. Specifically,
ALTER applies a link-like multi-label inference scheme to consider the short-term co-occurrence dependency
among multiple labels for the event inference. Moreover, ALTER-p uses a newly designed attention mechanism,
which fully exploits audio information and the importance of all data points, to mitigate information loss
in audio data feature learning for the event inference performance improvement. Furthermore, ALTER-pp
takes into account the long-term co-occurrence dependency among labels to infer an event with more diverse
elements, where another devised attention mechanism is utilized to conduct a graph-like multi-label inference.
Finally, extensive real-data experiments demonstrate that our models are effective in integral event inference
and also outperform the state-of-the-art models.
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1 INTRODUCTION

Nowadays, the recordings of visual and audio data capturing various scenes of people’s daily
life can be acquired and collected anywhere and anytime through cameras and microphones on
ubiquitous smart devices [27, 28, 34]. In the meantime, with the advent of the deep learning era,
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2 Honghui Xu et al.

visual and audio data can be analyzed more effectively for providing individuals with more accurate
customized services. However, the evolution of technology is a double-edged sword — such data
can also be malevolently used by attackers to infer individuals’ sensitive information [5, 11, 20],
causing severe privacy leakage and economic loss.

So far, many works have been proposed to investigate visual and audio data-oriented privacy
inference models. These visual-based approaches can successfully achieve the identification of
individuals [18], the inference of individuals’ activities [22], and the recognition of individuals’
locations [13]. Nevertheless, these models suffer a lot of performance loss because of the poor image
quality and may even become infeasible due to the constraint of camera coverage. Considering
the omnidirectional coverage and easier deployment of audio sensors, some researchers change
their targets to study imperceptible privacy inference attacks on audio data. These audio-based
privacy inference models can be broadly classified into three categories. (i) Audio-based person
identification approaches are designed by discriminating the timbres of different people [9, 23];
(ii) Sound prediction models have been developed to classify different activities’ sounds of human
for human activity detection [1, 4]; (iii) Environmental scene recognition schemes are devised to
infer indoor and outdoor environments where human locate through distinguishing the various
environmental audios [6, 31]. But, the existing works are only able to infer one specific element
of an event about human, such as who they are, what they do, or where they are. Although these
one-element prediction approaches can be combined to perform integral event inference, such a
method lacks scalability in reality as the number of elements needs to be known or determined
before model combination. What’s worse, this event inference model built in a simple combination
way will become more and more complicated with the increase of elements, greatly increasing
implementation cost. Therefore, it is still challenging to design an effective and scalable audio-based
integral event inference model.

To fill this blank, we present an Audio-based integral evenT infERence (ALTER) model that is
composed of three main components, including data preprocessing, sequential data feature learning,
and multi-label inference. Our ALTER model can successfully achieve the goal of integral event
inference by simultaneously leveraging the temporal correlation in the time-series audio data
and the short-term co-occurrence dependency among multiple labels. Additionally, to alleviate
the information loss in the sequential data feature learning, we improve ALTER model to the
ALTER-p model by designing a new attention mechanism, in which we entirely exploit the audio
information and the importance of all data points to get the output data features. Besides, for the
purpose of inferring a sophisticated event with more various elements, the ALTER-p model is
further upgraded to the ALTER-pp model, where we devise another new attention mechanism to
help represent the long-term co-occurrence dependency among labels. Finally, the effectiveness
of the three proposed models is evaluated and compared by conducting comprehensive real-data
experiments. The multifold contributions of our work are concluded below.

e To the best of our knowledge, this is the first work to investigate an audio-based integral
event inference task.

e We design ALTER, ALTER-p, and ALTER-pp models to perform the audio-based integral
event inference with considering different application requirements and data characteristics.

e In our models, one novel attention mechanism is developed to retain information as much
as possible in audio data feature learning, and another creative attention mechanism is
implemented to capture the long-term co-occurrence dependency among multiple labels.

e We also propose a link-like multi-label inference scheme and a graph-like multi-label
inference method to realize the event inference based on the short-term co-occurrence
dependency and the long-term co-occurrence dependency among labels, respectively.
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Overheard: Audio-based Integral Event Inference 3

e Extensive real-data experiments are well conducted to validate the effectiveness of our
proposed models on integral event inference and to illustrate their superiority over state-of-
the-art approaches.

The rest of this paper is organized as follows. The related works are briefly summarized in
Section 2. We detail our methodology in Section 3, and then conduct real-data experiments and
analyze the experimental results in Section 4. After that, we propose some discussions and future
works in Section 5. Finally, we end up with a conclusion in Section 6.

2 RELATED WORKS

In this section, we summarize the related works on visual-based and audio-based privacy inference
models.

2.1 Visual-based Privacy Inference

With the impressive growth of deep learning in computer vision [16], attackers can maliciously
detect, extract, and retrieve individuals’ sensitive information in visual data via deep learning
models. When one person’s visual data is public on social platforms, attackers can leverage deep
learning tools to automatically steal his/her private information, including who the person is,
what the person does, and where the person is. For examples, recognition models can be exploited
to identify people in pictures [15, 18], detection models can be used to detect human activities
in videos [7, 22], and other inference models can be employed to infer individuals’ locations in
images [13, 30].

However, the performance of these visual-based models is greatly affected by the limited quality
of visual data, and these models even will not be able to work when an object in pictures is occluded,
when an activity occurs in the dark, or when an event happens in an area that is beyond the
coverage of video cameras.

2.2 Audio-based Privacy Inference

Audio data can be used as a supplementary information source to achieve more stealthy privacy
inference attacks own to its omnidirectional coverage and audio sensors’ easy deployment in various
environments [10, 11]. Therefore, a few research has begun to investigate the possibility of inferring
privacy using audio data, which can be broadly classified into three mainstream applications. (i)
Person identification can be accomplished by matching the newly captured timbre of a person
from audio with the previously learned timbre of the same person [8, 9, 12, 23]. (ii) Vocal sounds
produced by humans can also be recognized through audio data [1, 3, 4], which includes infants’
and adults’ screams, crying, coughing, clapping, whistling, sneezing, laughing, and the sound of
footsteps. (iii) Indoor and outdoor environmental scenes where humans locate, such as homes,
offices, and residential areas, can be detected by analyzing an audio stream as well [2, 6, 29, 31].
Although these existing works have demonstrated that it is possible to infer a single specific type
of sensitive information about humans in audio, there is no one to design a scheme to directly
speculate an integral event related to humans by analyzing polyphonic audio.

In this paper, three audio-based models are presented to realize the inference of human’s integral
event by processing polyphonic audio. The technical novelty of our models lies in two aspects. (i)
The temporal correlation and the importance of different data points are leveraged in the sequential
data feature learning. (ii) The co-occurrence dependency in multiple labels and the importance of
these labels are exploited in the final event prediction.
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Fig. 1. Framework of Our Proposed Audio-based Integral Event Inference Model (ALTER)

3 METHODOLOGY

In this paper, we treat each element in an event as a label of one polyphonic audio. Accordingly,
we aim to predict multiple labels of one polyphonic audio and then combine these labels related
to the same event to infer the integral event. To this end, we propose an Audio-based integral
evenT infERence (ALTER) model as presented in Fig. 1. Generally speaking, ALTER is composed
of three components, including (i) data preprocessing, (ii) sequential data feature learning, and
(iii) multi-label inference. At the beginning, in data preprocessing, we convert the continuous
polyphonic audio into Mel-Frequency Cepstrum Coefficients (MFCCs) [25]. Then, a sequential
data feature learning scheme is used to capture the features of sequential input while considering
the temporal correlation in the sequential data. Next, the multi-label inference stage leverages the
extracted data features to predict multiple element labels. In the following, after introducing the
design of three components of ALTER in Section 3.1, we present two upgraded models, ALTER-p
and ALTER-pp, in Section 3.2 and Section 3.3, respectively.

3.1 ALTER

TN adi] |
)
l WE Ll e A

I 10E 1

MFCCs

Continuous Polyphonic Audio

—— (1. Windowing
¢ —
. .

Fig. 2. Procedure of Calculating MFCCs

3. Mel
Filterbank

3.1.1 Data Preprocessing. Since MFCCs have shown effectiveness in capturing the features of the
acoustic signal in the speech recognition systems [19, 26, 33], we transform the polyphonic audio
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into MFCCs for our audio-based event inference task. In Fig. 2, we illustrate the procedure for
calculating MFCCs of audio step by step: (i) window the original continuous polyphonic audio into
a series of short frames; (ii) for each frame, calculate the energy spectrum using Discrete Cosine
Transform (DCT) [32]; (iii) apply a mel filterbank [21], which is a series of bandpass filters with
constant bandwidth and spacing on a mel frequency scale, to each frame’s energy spectrum in
order to get the multiple mel spectra; (iv) compute the logarithm of the mel spectra of each frame;
and (v) convert these frames’ logarithmic mel spectra back to the time domain via inverse DCT [32],
which are MFCCs of the polyphonic audio. For presentation simplicity, we denote the calculation
procedure of MFCCs as a function F(-) and use F(-) to transform the original continuous audio
vector A; into MFCCs matrix Mgy, i.e.,

Max: = F(At)’ (1)

where t is the dimension of the audio vector, and d is the number of filters in the filterbank.

MFCCs M ;. ,
X1 5) X3 .
LSTM
. Output Dat
hl - h2 - h3 ht :epal:ureza

Fig. 3. LSTM-based Sequential Data Feature Learning

Label 1 Label2 - Label n

)+ yl )+ y2 - @ yn LSTM

Output Label

hl(y) — h2(y) —_— ht(y ) — Features

Fig. 4. LSTM-based Multi-label Feature Learning

3.1.2 Sequential Data Feature Learning. We treat the obtained MFCCs matrix as a sequence Myx; =
{x1,x2,- -+, x:}, where each element is a d-dimensional vector. LSTM neural network [14] provides
an extraordinary function to learn the features of sequential data with the consideration of temporal
correlation in data. In light of this, we use the LSTM unit to extract the features from the sequence
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Fig. 5. Link-like Multi-label Inference
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Fig. 6. Data Flow of ATLER Model

My, which can be formulated as follows:

ir = o(W;lhr_1,xr] + by), @)
fr=o(Wrlhr_1,x7] + bf), )
or = o(Wo[hr—1, x1] + bo), )
ér = o(W[hr-1,x7] + be), ®)
cr = frer-1 +ircr, (©)
hr = or - tanh(c7), ™)

where xr € Myyx;; T € [2,t]; i, fr, and or are the input gate, forget gate, and output gate,
respectively; o(+) is the activation function; W;, Wy, W, and W, are the weights, and b;, bf, b,, and
b. are the biases; ¢t is the immediate state, and c7 is the long-term state during sequential data
feature learning process; tanh(-) is the hyberbolic tangent activation function; and x7 and At are
T-th input and output information, respectively. The LSTM-based sequential data feature learning
process is presented in Fig. 3, where we can get the final output features h; from Mgy, .
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Fig. 7. LSTM-Attention-based Sequential Data Feature Learning
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3.1.3  Multi-label Inference. It is known that an integral event can be described by several elements,
such as who is a person, what is a person talking, and where is a person. In this paper, we assume
that an integral event is composed of n elements, each of which can be taken as one label of
continuous polyphonic audio. Thus, we can consider the event inference task as a multi-label
inference task. Our multi-label inference process contains two phases, i.e., multi-label feature
learning and multi-label inference.

As a matter of fact, one event is usually composed of more than one concurrent element, including
object, activity, environment, etc. For example, in an event that “a girl has a laughter at home”, the
coccurrent elements are gender (i.e., female), activity (i.e., laughter), and location (i.e., home). That
is, the elements in an event are co-occurrence dependent. Hence, for multi-label feature learning,
we attempt to learn the features of multiple labels while considering the co-occurrence dependency
among these element labels. We can treat these correlated labels as a label sequence and denote the
label sequence as Y = {y1,y2, - - - , yn}, Where y; is the i-th element label in the event. In Fig. 4, we
exploit LSTM neural network to extract the multi-label features with incorporating label correlation.
Furthermore, taking into account that the data features mainly affect the labels’ prediction, the
output data features h; are also used in our LSTM-based multi-label feature learning, which can be

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article . Publication date: August 2024.
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formulated below:

iy = oW Th) | yn] + Ak + b)), ®)
£ = O'(W;y) (Y yn] + Ashs + bj(,y) ), )
ol = oWV [hY |, yn] + Aohs + b5Y), (10)
ey = oW [ ] + Ache + b)), (1)
W = fe¥ i Wy (12)

hY =0 - tanh(c?), (13)

(y)

whereyy € Y; N € [2,n]; il(\;/) v »and il(\;/)

are the input gate, forget gate, and output gate for label
bi(y)’ bj(ry)’ b(()y)’

is the immediate state, and cj(\]y) is

feature learning, respectively; Wi(y), W;y), Wo(y), and Wc(y) are the weights, and

biy) (y)

and are the biases in the label feature learning process; ¢

N
the long-term state during the label feature learning; yy and hj(vy) are N-th input and output label
information, respectively; and A;, A £ Ao, and A, are the weights of data features in the LSTM-based
label feature learning architecture. Consequently, we can obtain the final label features hfly) for
further inference.

Moreover, as presented in Fig. 5, we propose a link-like multi-label inference, during which we
consider the fact that the current predicted label y can be influenced by the previous one predicted
label §n-_1, the output data features h;, and output label features h,(ly). So, we design the final layer
using so ftmax(-) function shown in Eq. (14).

in = softmax(Usa(Ws[hY by, Gn-1]) + bs), (14)

where Us, W;, bs are the parameters of softmax(-) to be learned.

At the end, we present the data flow of our proposed ATLER model in Fig. 6 by combining the
aforementioned three components. The ALTER model is trained by minimizing the summation of
the cross entropy between the predicted label 7, and the corresponding ground-truth label y,,.

Label 1 Label2 - Label n

L+ Y1 Bt Yy o Dt Yy

l

LSTM + Attention

L Output Label
n Features

Fig. 9. LSTM-Attention-based Multi-label Feature Learning

3.2 ALTER-p

In ALTER, we use LSTM to extract the data features to get the output h;, which, however, compresses
too much original data information. In order to make full use of all data information and the
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Fig. 10. Graph-like Multi-label Inference

GroundTruth: Label 1 Label2 - Labeln
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MFcCs M.,

Output Label
— Features

D,

t' Output Data
Features

Fig. 11. Data Flow of ATLER-pp Model

An Event

importance of data points at the same time, we update our sequential data feature learning by using
LSTM and attention mechanisms simultaneously. In Fig. 7, we show the LSTM-Attention-based
sequential data feature learning scheme. First of all, we can compute the unnormalized relevance
score er of the data x7 by using the following attention function:

er = Qe - tanh(W hr + Uexr + 2¢), (15)

where T € [1,t], and Q., W, U, and z, are the parameters in the attention function. Then, we can
calculate the corresponding attention weight ar in Eq. (16) via normalizing the relevance scores.

t
ar = exp(eT)/Z exp(er). (16)
T=1

Based on these attention weights, we define the new output data features as:
t
Dt = Z arxr. (17)
T=1

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article . Publication date: August 2024.



442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490

10 Honghui Xu et al.

Accordingly, the final prediction function in Eq. (14) should be updated as:
i = softmax(Uso(Wy[hY, Dy, gn-1]) + by). (18)

Finally, we replace the original LSTM-based one in ALTER with the LSTM-Attention-based
sequential data learning to obtain our ALTER-p model, the data flow of which is shown in Fig. 8.
ALTER-p is be trained in the same way as the ALTER model.

3.3 ALTER-pp

Similarly, we expect to obtain the label features by using all label information while considering
the importance of multiple labels. For this purpose, the LSTM-Attention architecture shown in
Fig. 9 is applied to update our original LSTM-based multi-label feature learning component. In this

(y)
N

architecture, we first calculate the unnormalized relevance score e,;” of the label yy;, i.e.,

el(\]y) = Qéy) . tanh(We(y)h](Vy) + Ue(y)yN + ziy)), (19)

where N € [1,n], and Qéy), We(y), Ue(y), and ziy) are the parameters of the attention function in
label feature learning. Then, the attention weight of the N-th label Sy can be computed as:

B = exp(e&”)/i] exp(ey). (20)

N=1

Consequently, we define the new label features to be:

L,= Z BNUN. (21)
N=1

Moreover, inspired by the attention-based learning process, we propose a new graph-like multi-
label inference presented in Fig. 10, where the prediction result of current label y is affected by
all previously predicted labels {§1, - - - , jn—-1}. Thus, by using the newly learned label features L,
and the graph-like multi-label inference idea, we can further improve the prediction function in
Eq. (22).

N-1
i = softmax(Uso(Wi[Ln, Ds, > Bid;1) +bs). (22)
j=1

After all, ALTER-pp is constructed by employing LSTM-Attention-based sequential data feature
learning, LSTM-Attention-based multi-label feature learning, and graph-like multi-label inference,
the data flow of which is demonstrated in Fig. 11. We will also train ALTER-pp using the same way
of training ALTER.

Table 1. Gender Prediction Results (Ours v.s. Baseline 1)

Model Data Learning Label Learning Acc Pre Rec F1 Auc
Baseline 1 / / 0.834 0.902 0.698 0.832 0.916

ALTER LSTM LSTM 0.844 (1 1.20%) | 0.911 (7 1.00%) | 0.699 (1 0.14%) | 0.842 (1 1.20%) | 0.918 (1 0.22%)
ALTER-p | LSTM + Attention LSTM 0.845 (1 1.32%) | 0.916 (T 1.55%) | 0.707 (T 1.29%) | 0.843 (T 1.32%) | 0.922 (1 0.66%)
ALTER-pp | LSTM + Attention | LSTM + Attention | 0.846 (T 1.44%) | 0.919 (T 1.88%) | 0.718 (1 2.87%) | 0.844 (1 1.44%) | 0.926 (1 1.09%)
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491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Overheard

: Audio-based Integral Event Inference

Table 2. Vocal Sound Prediction Results (Ours v.s. Baseline 2)

Model Data Learning Label Learning Acc Pre Rec F1 Auc
Baseline 2 / / 0.900 0.925 0.800 0.901 0.975

ALTER LSTM LSTM 0.908 (1 0.89%) | 0.944 (T 2.05%) | 0.833 (T 4.13%) | 0.908 (1 0.78%) | 0.980 (T 0.51%)
ALTER-p | LSTM + Attention LSTM 0.914 (T 1.56%) | 0.949 (T 2.59%) | 0.836 (T 4.50%) | 0.914 (T 1.44%) | 0.986 (T 1.13%)
ALTER-pp | LSTM + Attention | LSTM + Attention | 0.918 (T 2.00%) | 0.954 (T 3.14%) | 0.898 (T 12.25%) | 0.918 (T 1.89%) | 0.993 (T 1.85%)

Table 3. Environment Prediction Results (Ours v.s. Baseline 3)

Model Data Learning Label Learning Acc Pre Rec F1 Auc
Baseline 3 / / 0.987 0.964 0.503 0.979 0.976

ALTER LSTM LSTM 0.989 (1 0.20%) | 0.975 (T 1.14%) | 0.511 (T 1.59%) | 0.984 (T 0.51%) | 0.985 (T 0.92%)
ALTER-p | LSTM + Attention LSTM 0.997 (1 1.01%) | 0.985 (T 2.18%) | 0.534 (T 6.16%) | 0.994 (1 1.53%) | 0.993 (T 1.74%)
ALTER-pp | LSTM + Attention | LSTM + Attention | 0.998 (T 1.11%) | 0.988 (T 2.49%) | 0.567 (] 12.72%) | 0.997 (] 1.84%) | 0.995 (1 1.95%)

Table 4. Event Prediction Results (Ours v.s. Baseline)

Model Data Learning Label Learning Acc Pre Rec F1 Auc
Baseline / / 0.718 0.521 0.828 0.704 0.945
ALTER LSTM LSTM 0.734 0.534 0.890 0.729 0.966
ALTER-p | LSTM + Attention LSTM 0.778 (1 5.99%) | 0.587 (1 9.93%) | 0.896 (T 0.67%) | 0.776 (T 6.45%) | 0.970 (T 0.41%)

ALTER-pp | LSTM + Attention | LSTM + Attention | 0.781 ( 6.40%) | 0.675 (T 26.4%) | 0.897 (1 0.79%) | 0.779 (T 6.96%) | 0.975 (T 0.93%)
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Fig. 12. Gender Prediction Results (Ours v.s. Baseline 1)
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Fig. 13. Vocal Sound Prediction Results (Ours v.s. Baseline 2)

3.4 Model Comparison

We design ALTER model to infer an audio-based integral event by leveraging the temporal cor-
relation in audio and the co-occurrence dependency among multiple element labels. However, in
ATLER, the LTSM-based sequential data feature learning, which compresses the audio data into the
output data features, may lead to data information loss when processing relatively longer audio. To
reduce such information loss, ALTER-p is proposed by making full use of audio information and
the importance of all data points, which is more helpful to analyze an audio with a relatively longer
time period. Nonetheless, in the link-like multi-label inference of ALTER-p, we only consider a
short-term co-occurrence dependency among labels, which may be limited in predicting a compli-
cated event with relatively more elements. While, in order to effectively predict a sophisticated
event with diverse elements, ALTER-pp is further presented by taking advantage of the long-term
co-occurrence dependency among labels (i.e., the graph-like multi-label inference).

4 EXPERIMENTS

In this section, we first introduce the experiment settings and then conduct comprehensive experi-
ments to evaluate the effectiveness of our proposed ALTER, ALTER-p, and ALTER-pp models on a
real-world dataset. Besides, more extensive experiments are done to compare our proposed models
with the state-of-the-art.
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Fig. 14. Environment Prediction Results (Ours v.s. Baseline 3)

4.1 Experiment Settings

The datasets, baselines, performance metrics, network architectures, and parameter settings are
described below.

4.1.1 Dataset. We adopt two public datasets, including VocalSound [17] and TUT Acoustic
Scenes 2016 [24]. VocalSound is a dataset consisting of males’ and females’ recordings of "laughter,
sigh, cough, throat clearing, sneeze, and sniff". TUT Acoustic Scenes 2016 includes recordings
from various acoustic environments, such as homes, offices, and residential areas. Since we aim to
test the performance of our audio-based integral event inference models in the experiments, we
synthesize these two datasets to obtain a polyphonic audio dataset, which contains human gender
information, human vocal sound information, and environmental information. In this synthetic
dataset, for instance, one polyphonic audio records an event that “a female has a laughter at home”,
and the corresponding labels of this audio record are “female”, “laughter”, and “home”.

4.1.2 Baselines. Although no work has been proposed to predict an integral event based on audio
so far, there are some related works to infer one element in an event. The one-element event
inference can be treated as a special case in our models. Thus, we choose the following baselines to
conduct comparison experiments so as to further illustrate the superiority of our models in this
special case. (1) An EfficientNet-based model proposed in [17] is a state-of-the-art model for the
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Fig. 15. Event Prediction Results (Ours v.s. Baseline)

gender prediction on VocalSound dataset. (2) In [17], another state-of-the-art EfficientNet-based
approach is presented to make human vocal sound inference on VocalSound dataset. (3) A GMM-
based model in [24] is the state-of-the-art to achieve environment recognition on TUT Acoustic
Scenes 2016 dataset.

4.1.3  Performance Metrics. Since the audio-based integral event inference can be considered as a
multi-label classification task, we use five typical metrics for classification tasks as the performance
measurements, including accuracy (Acc), precision (Pre), recall (Rec), F1 score (F1), and area under
the receiver operating characteristic curve (Auc). A higher value of Acc indicates a more precise
prediction outcome, and the same principle applies to Pre, Rec, F1, and Auc.

4.1.4  Network Architectures. In ALTER model, we use two LSTM layers for sequential data feature
learning and another two LSTM layers in the multi-label inference phase. For ALTER-p, we maintain
the design of multi-label inference in ALTER and update the sequential data feature learning in
ALTER by applying two LSTM layers and an attention layer concurrently. For ALTER-pp, we follow
the sequential data feature learning architecture in ALTER-p while achieving multi-label inference
via two LSTM layers plus an attention layer.

4.1.5 Parameter Settings. In data preprocessing, we window each audio sample into short frames
every 10ms and use a filterbank with 128 filters to convert the audio vector into the MFCCs matrix.
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We train the neural networks in our proposed ALTER, ALTER-p, and ALTER-pp models using an
Adam optimizer for 80 epochs with an initial learning rate at 1e — 4 and a batch size of 100.

4.2 Comparison between Ours and Baselines

In order to verify the effectiveness of ALTER, ALTER-p, and ALTER-pp models on the one-element
event inference, we compare the performance of our proposed models with three state-of-the-art
baselines. Firstly, we show the gender recognition results of our models and baseline 1 in Table 1
and Fig. 12, where it can be seen that our proposed models’ performance is comparable and even
better than baseline 1. Secondly, the vocal sound prediction results of our models and the baseline
2 are presented in Table 2 and Fig. 13. From these results, we can find out that the proposed models
outperform baseline 2 with regard to human vocal sound inference. Thirdly, by comparing the
results of Acc, Pre, Rec, F1, and Auc in Table 3 and Fig. 14, we can notice that our models are
superior to baseline 3 in terms of environment prediction. To sum up, our models have superiority
over the previous state-of-the-art approaches in terms of one specific element inference since the
temporal correlation and the importance of different data points are leveraged in our proposed
sequential data feature learning. The names of the baselines and their corresponding models are
shown in Table 5.

Table 5. Baseline Models

Baseline 1 | EfficientNet-based Model [17]
Baseline 2 | EfficientNet-based Model [17]
Baseline 3 GMM-based Model [24]

4.3 Evaluation on Our Models

Since the problem of integral event inference has not been address by existing works, we combine
baseline 1, baseline 2, and baseline 3 to obtain a event inference model, which is used as a baseline
to investigate the effectiveness of our proposed models. To be specific, after training our models and
the baseline model, we use the trained models to test the polyphonic audios in the testing dataset
to predict the multiple element labels. Then, the predicted element labels and the corresponding
ground-truth ones are used to calculate the event prediction performance to measure the event
inference effectiveness, for which we present the values of Acc, Pre, Rec, F1, and Auc in Table 4 and
Fig. 15. The results demonstrate that ALTER model outperforms the baseline in terms of integral
event inference on polyphonic audio thanks to the incorporation of the temporal correlation
in audio and the short-term co-occurrence dependency among multiple labels simultaneously.
Besides, by comparing ALTER-p with ALTER, we can see that the values of all performance metrics
are increased. Significantly, Acc and F1 are increased by about 6.00%, and Pre is increased by
about 10.00%. The comparison indicates that ALTER-p can enhance the performance of the event
prediction due to the full utilization of data information and the importance of all data points.
In addition, compared with ALTER-p, ALTER-pp can obtain more improvements in the event
prediction performance thanks to the consideration of the long-term co-occurrence dependency
among labels.

5 DISCUSSION AND FUTURE WORK

In this section, we discuss two limitations of this work and present our future research directions.
(i) Although the experimental results have shown that ALTER-p can improve the performance
of event prediction by considering the whole data information and the importance of all the data
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points, the performance improvement is not too much since the audio samples in our synthetic
dataset are short. Therefore, in the future, it is desirable for us to highlight the advantage of
ALTER-p by collecting longer real-world audios via extensive experiments.

(ii) Similarly, due to the limitation of data source, we use our ALTER-pp model to predict the
three-element event. As a result, the graph-like multi-label inference in ALTER-pp cannot bring
too much performance improvement. We will conduct more comprehensive experiments after
collecting polyphonic audios of human events with more diverse elements so as to better evaluate
the benefit of considering the long-term co-occurrence dependency among labels.

6 CONCLUSION

This paper is the first work to investigate an audio-based integral event inference. Firstly, we propose
an ALTER model to effectively achieve event inference by leveraging the temporal correlation in
audio and the short-term co-occurrence dependency among multiple labels. Moreover, ALTER-p
is designed by fully exploiting data information and the importance of all data points so as to
enhance event prediction performance. Furthermore, ALTER-pp is proposed by further considering
the long-term co-occurrence dependency among multiple labels for event inference performance
improvement. Finally, via comprehensive real-data experiments, we demonstrate the effectiveness of
our proposed models on the integral event inference and their advantages over the state-of-the-art
methods.
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