

Privacy-Preserving Mechanisms on Data-Driven Deep Learning Applications

Department of Computer Science Georgia State University

> Dr. Zhipeng Cai Email: zcai@gsu.edu

Data-Driven Deep Learning Applications

Face Recognition

Automatic Retailing

Automatic Driving

Al-aided Medical Diagnosis

6/23/23

Al-based Attacks

TECHNOLOGY EXECUTIVE COUNCIL

Artificial intelligence is playing a bigge-1. Twitter accused of covering up data breach that affects bad g millions 3. Personal and medical data for 11 million people accessed in On No PUBLISHED TUE, SEP Optus data breach about and El 4. Hacker attempts to sell data of 500 million WhatsApp users Australi before 2022 th on dark web 2022. 8 The info On No 9. SHEIN fined US\$1.9mn over data breach affecting 39 million home a be up customers In the In October, Zoetop Business Company, the firm that owns fast fashion brands SHEIN and ROMWE, numb detail million customers.

Bob Violino

was fined US\$1.9mn by the state of New York after failing to disclose a data breach which affected 39

Every Coin Has Two Sides

Privarcyebearkage

Utility v.s. Privacy

Data Modality in Applications

Audio-Visual Autoencoding for Privacy-Preserving Video Streaming

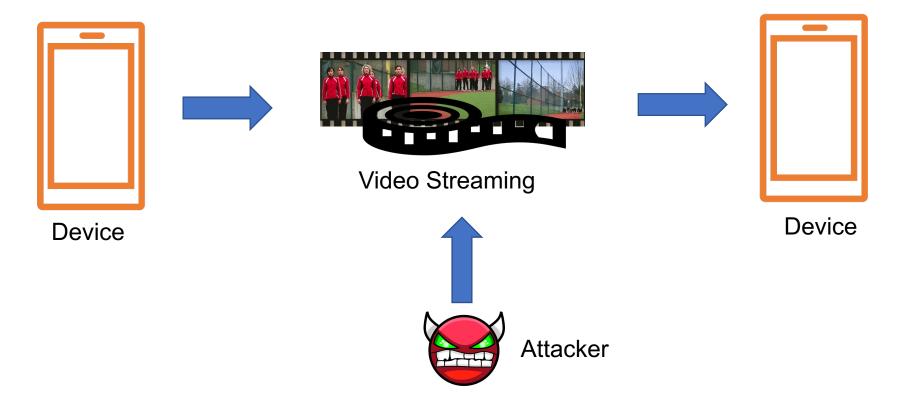
- 1. Research Background
- 2. Existing Privacy-Preserving Mechanisms
- 3. New Challenges
- 4. Our Novel Design
- 5. Evaluation

Audio-Visual Autoencoding for Privacy-Preserving Video Streaming

1. Research Background

- 2. Existing Privacy-Preserving Mechanisms
- 3. New Challenges
- 4. Our Novel Design
- 5. Evaluation

Research Background

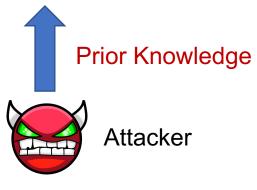


- 1. Research Background
- 2. Existing Privacy-Preserving Mechanisms
- 3. New Challenges
- 4. Our Novel Design
- 5. Evaluation

Existing Privacy-Preserving Mechanisms

1. Noise-based Privacy-Preserving Models

Attention: Random noise follows some patterned distributions (e.g., normal distribution).



Existing Privacy-Preserving Mechanisms

Attention: The traffic data can also be used to infer some private information.

Georgia

Audio-Visual Autoencoding for Privacy-Preserving Video Streaming

- 1. Research Background
- 2. Existing Privacy-Preserving Mechanisms
- 3. New Challenges
- 4. Our Novel Design
- 5. Evaluation

Also, for this specific scenario (video streaming transmission)

1) To avoid the utilization of random noise with patterned distribution

3) Is it possible to consider the temporal information in terms of privacy preservation design?

New Challenges

In the design of a privacy-preserving mechanism:

Audio-Visual Autoencoding for Privacy-Preserving Video Streaming

- 1. Research Background
- 2. Existing Privacy-Preserving Mechanisms
- 3. New Challenges
- 4. Our Novel Design
- 5. Evaluation

Our Novel Design

We perturb the video streaming with its extracted audio.

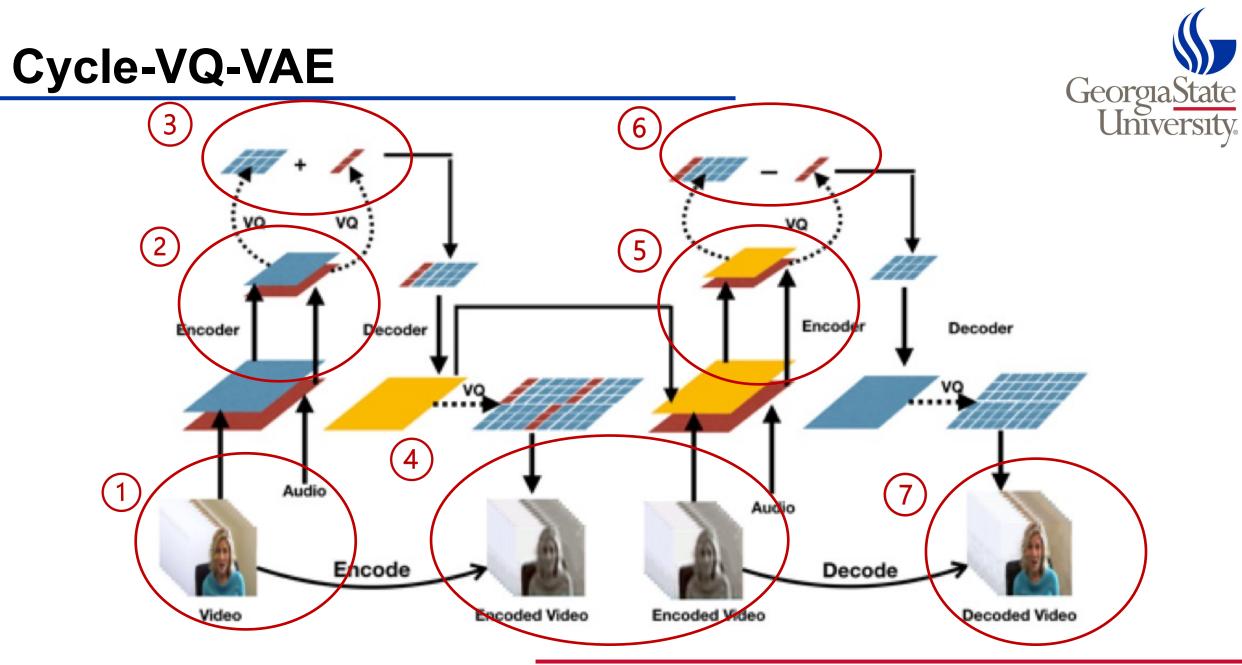
1) The extracted audio is unique and has no patterned distribution.

We use the audio to encode the video streaming.

2) The traffic data flow is smoothed due to the video compression during transmission.

Audio-Visual Autoencoding Scheme

No side-channel information



Audio-Visual Autoencoding Scheme

Is it possible to consider the temporal information in terms of privacy preservation design?

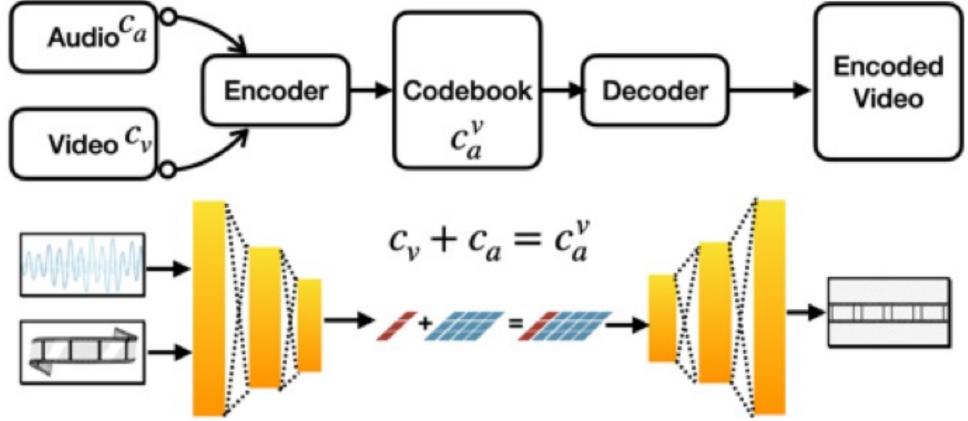
Without considering temporal information

Frame-to-Frame (F2F) Model

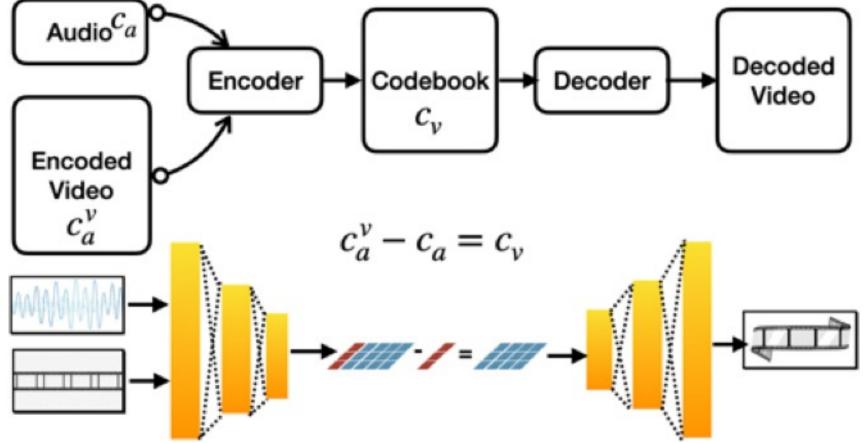
Considering temporal information

Video-to-Video (V2V) Model

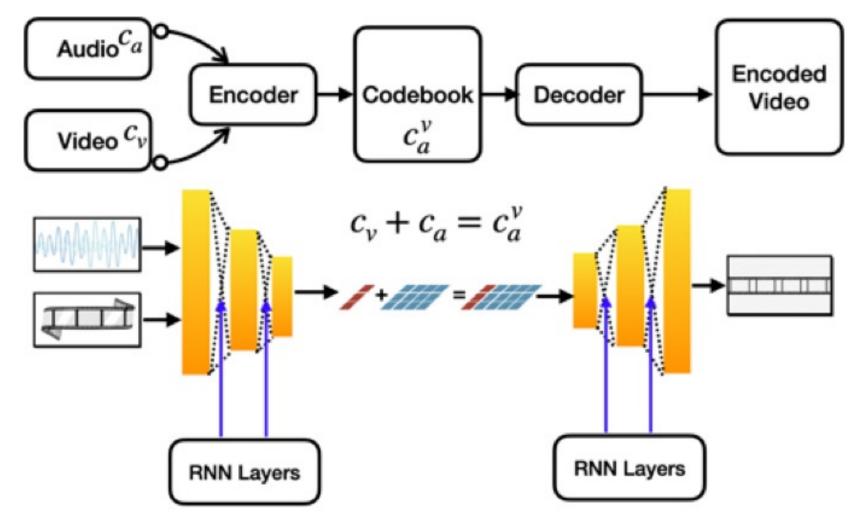
F2F Model --- Encoding



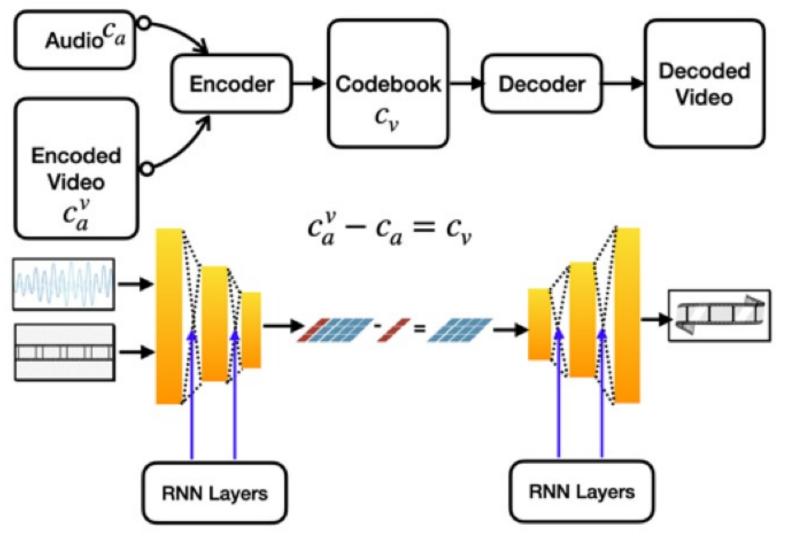
F2F Model --- Decoding



V2V Model ---- Encoding



V2V Model --- Decoding



Audio-Visual Autoencoding for Privacy-Preserving Video Streaming

- 1. Research Background
- 2. Existing Privacy-Preserving Mechanisms
- 3. New Challenges
- 4. Our Novel Design
- 5. Evaluation

Experiment Settings

1. Dataset

Extract the video frames and the audio from 200 videos in the AVE dataset

- 2. AI Detection Model
 - 1) Face Detection Model; 2) Semantic Segmentation Model
- 3. Side-channel Inference Attack Model

Analyze traffic data to achieve the activity recognition

4. Two Baselines

1) AE-based Model; 2) Style Translator-based Model

Effectiveness in terms of privacy protection

Face Detection Performance (Ours)

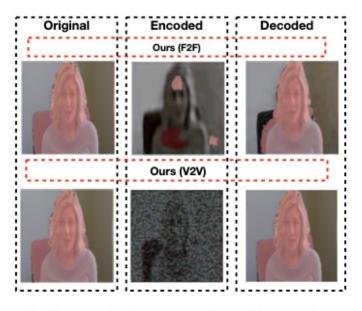
(a) Face Detection on F2F Video Frames

(b) Face Detection on V2V Video Frames

(c) Face Detection Comparison

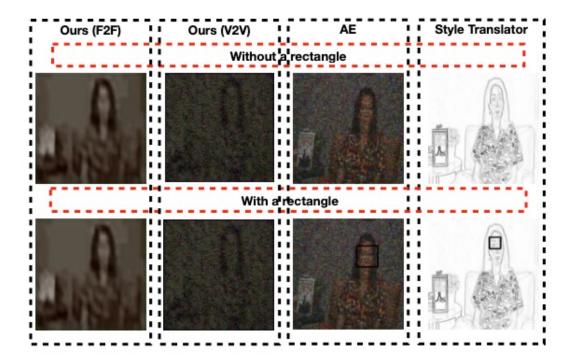
Semantic Segmentation Performance (Ours)

(d) Semantic Segmentation on F2F Video Frames (e) Semantic Segmentation on V2V Video Frames



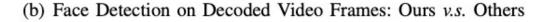
(f) Semantic Segmentation Comparison

Face Detection (Ours v.s. Baselines)



(a) Face Detection on Encoded Video Frames: Ours v.s. Others

Ours (V2V) AE Style Translator Ours (F2F) •• Without a rectangle īī With a rectangle



Semantic Segmentation (Ours v.s. Baselines)

(c) Semantic Segmentation on Encoded Video Frames: Ours v.s. Others

(d) Semantic Segmentation on Dencoded Video Frames: Ours v.s. Others

TABLE II ACCURACY OF FACE DETECTION

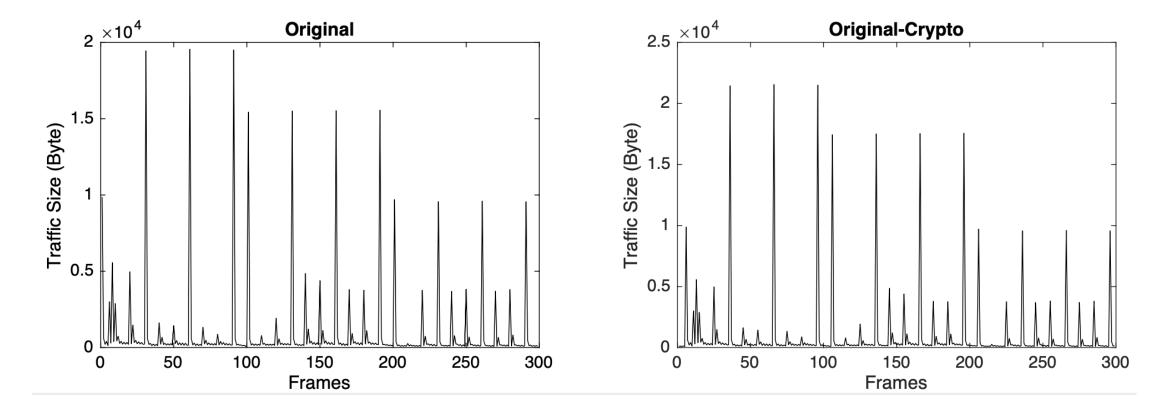
	Ours(F2F)	Ours(V2V)	AE	Style Translator
Original	96.67%	96.67%	96.67%	96.67%
Encoded	6.00%	0.00%	26.67%	36.67%
Decoded	80.00%	96.67%	46.67%	63.33%

Accuracy of Semantic Segmentation

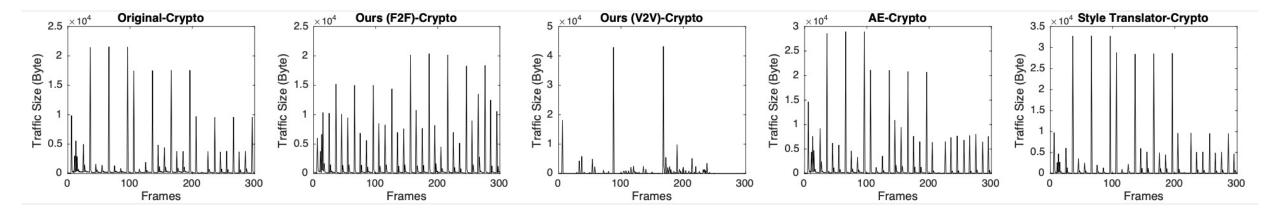
TABLE III ACCURACY OF SEMANTIC SEGMENTATION

	Ours(F2F)	Ours(V2V)	AE	Style Translator
Original	93.30%	93.30%	93.30%	93.30%
Encoded	6.70%	0.00%	20.00%	36.67%
Decoded	73.33%	93.30%	43.30%	60.00%

Side-Channel Privacy Leakage



Traffic Size after Privacy Protection



Activity Inference

TABLE IV RESULTS OF ACTIVITY INFERENCE

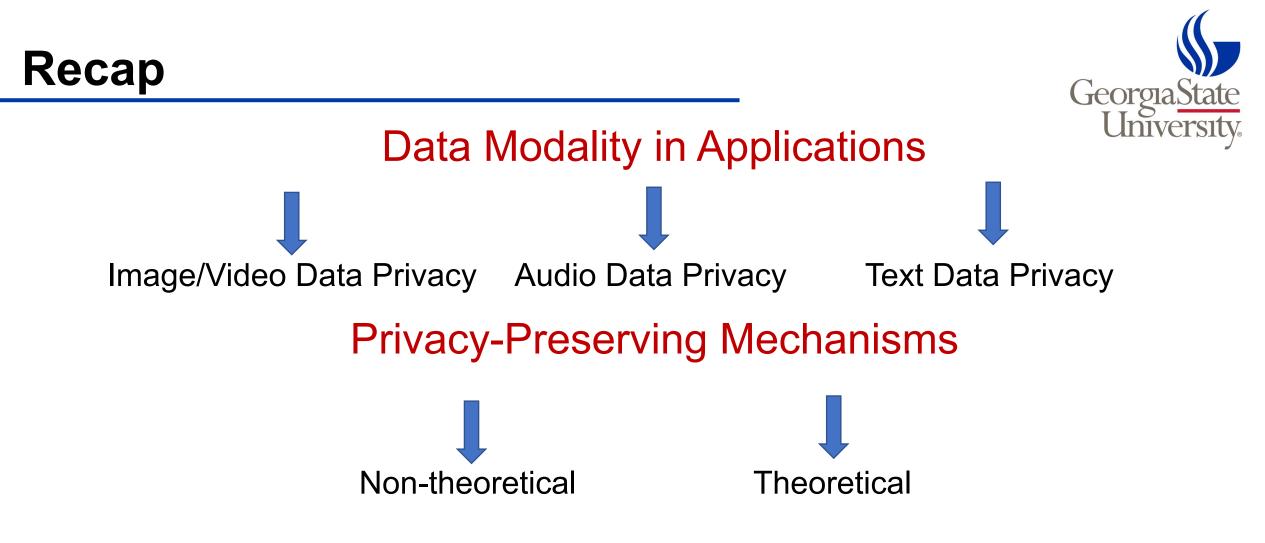
	Accuracy		Accuracy
Original	95.80%	Original-Crypto	94.90%
Ours (F2F)	42.86%	Ours (F2F)-Crypto	41.98%
Ours (V2V)	0.00%	Ours (V2V)-Crypto	0.00%
AE	95.60%	AE-Crypto	94.80%
Style Translator	94.50%	Style Translator-Crypto	93.70%

Encoding Process helps Video Compression

Transmission Efficiency

TABLE VTRANSMISSION TIME AT DIFFERENT BANDWIDTHS (OURS (F2F) V.S. OTHERS)

	Original	Ours (F2F)	Ours (V2V)	AE	Style Translator
0.5MB/s	3.84s	3.24s(↓ 15.6%)	1.75s(↓ 54.4%)	5.6s(† 45.8%)	4.2s(↑ 9.3%)
1MB/s	1.87s	1.57s(↓ 16.1%)	0.87s(↓ 53.1%)	2.68s(† 43.3%)	2.05s(† 9.6%)
2MB/s	0.94s	0.78s(↓ 17.1%)	0.44s(↓ 52.7%)	1.34s(↑ 42.5%)	1.02s(↑ 8.5%)
Average	8	↓ 16.2%	↓ 53.4%	↑ 43.8%	↑ 9.1%



Audio-Visual Autoencoding for Privacy-Preserving Video Streaming

Image/Video Data Privacy

Non-theoretical

Privacy-Preserving Mechanisms for Multi-label Image Recognition

Privacy-Preserving Multimodal Sentiment Analysis

From the viewpoint of users to the viewpoint of service providers

On-going work: Defense for Side-Channel Attack on Deep Learning Architecture

Thank You !!!