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Abstract—As on-device large language model (LLM) systems
become increasingly prevalent, federated fine-tuning enables ad-
vanced language understanding and generation directly on edge
devices; however, it also involves processing sensitive, user-specific
data, raising significant privacy concerns within the federated
learning framework. To address these challenges, we propose DP-
FedLoRA, a privacy-enhanced federated fine-tuning framework
that integrates LoRA-based adaptation with differential privacy
in a communication-efficient setting. Each client locally clips
and perturbs its LoRA matrices using Gaussian noise to satisfy
(ϵ, δ)-differential privacy. We further provide a theoretical
analysis demonstrating the unbiased nature of the updates and
deriving bounds on the variance introduced by noise, offering
practical guidance for privacy-budget calibration. Experimental
results across mainstream benchmarks show that DP-FedLoRA
delivers competitive performance while offering strong privacy
guarantees, paving the way for scalable and privacy-preserving
LLM deployment in on-device environments.

Index Terms—Large Language Model, Differential Privacy,
Federated Fine-tuning

I. INTRODUCTION

The increasing deployment of on-device large language
models (LLMs) has brought powerful language understanding
and generation capabilities directly to edge devices [1], [2].
To adapt these large models to diverse user environments
and device-specific tasks, federated fine-tuning has emerged
as a popular solution [3], [4]. Federated learning (FL) enables
decentralized model adaptation by allowing edge devices to
train on their local data while only sharing model updates [5],
[6]. Specifically, combined with parameter-efficient fine-tuning
(PEFT) techniques, this federated learning framework allows
even resource-constrained devices to fine-tune powerful LLMs
collaboratively [3], [7].

However, this federated training paradigm introduces seri-
ous privacy risks, even though raw data never leaves the de-
vice. In particular, membership inference attacks (MIAs) have
shown that adversaries, especially a semi-honest central server,
can exploit the shared model updates to infer whether specific
user data was used in training [8], [9]. These vulnerabilities
pose significant threats to user confidentiality, especially when
dealing with private text, medical records, or behavioral logs
processed by on-device LLMs [10], [11].

To bridge this gap, we propose a privacy-enhanced feder-
ated fine-tuning framework designed specifically for on-device

LLM ecosystems. Our approach integrates Low-Rank Adap-
tation (LoRA), a parameter-efficient fine-tuning technique,
with differential privacy (DP) in a communication-efficient
federated learning setup. We introduce a novel algorithm, DP-
FedLoRA, which enables each edge client to locally fine-tune
a low-rank adaptation of the global LLM using private data,
while preserving privacy through calibrated noise injection
and norm clipping. These privacy-enhanced updates are then
securely aggregated at a central server using a structured
stacking mechanism that reconstructs a global adaptation layer
without exposing individual client contributions, which en-
sures privacy protection against membership inference attacks
on-device LLMs.

Beyond practical design, we provide a theoretical analysis
of the privacy-utility trade-off introduced by Gaussian noise in
our DP-FedLoRA framework. To be specific, we show that the
injected noise introduces no bias in expectation but contributes
additional variance, which can be bounded analytically in
terms of the model size and noise scale. These bounds offer
explicit guidelines for tuning the privacy parameters without
severely degrading model performance. Finally, we validate
our proposed method through comprehensive experiments on
real-world LLM benchmarks. Our results demonstrate that
DP-FedLoRA delivers performance comparable to existing
federated fine-tuning methods, while providing strong privacy
guarantees across LLM-enabled edge devices. To sum up, the
key contributions of this work are summarized as follows:

• We propose the first privacy-enhanced federated fine-
tuning framework for on-device LLM ecosystems.

• We design a noise-injected aggregation mechanism that
preserves the LoRA structure and accommodates hetero-
geneous clients with varying adaptation ranks.

• We provide a theoretical analysis of the expectation and
variance of model updates under the Gaussian mechanism
in DP, offering practical guidance for balancing privacy
guarantees and learning performance.

• Comprehensive experiments are conducted across main-
stream benchmarks to validate the effectiveness of our
DP-FedLoRA.

The remainder of this paper is organized as follows. We
review related work in Section II and present the necessary
preliminaries in Section III. The threat model is described in
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Section IV, and the implementation details of our proposed
DP-FedLoRA framework are provided in Section V. We then
present the theoretical analysis in Section VI. Experimental
results are discussed in Section VII, and we conclude the paper
in Section VIII.

II. RELATED WORK

In this section, we review related work on mainstream
parameter-efficient fine-tuning techniques for LLMs, as well
as recent advances in federated fine-tuning of LLMs.

A. Parameter-Efficient Fine-tuning of LLMs

LLMs pose significant challenges in fine-tuning due to their
immense size and resource requirements. To address this,
parameter-efficient fine-tuning (PEFT) methods [12], [13] have
emerged as practical alternatives, enabling efficient adapta-
tion with minimal trainable parameters. (i) Early approaches
like BitFit [14] focus on tuning only bias terms, offering
comparable performance to full fine-tuning with drastically
reduced computation. (ii) Adapter tuning inserts small train-
able modules between transformer layers, allowing efficient
task adaptation without modifying the base model [15], [16].
LoRA (Low-Rank Adaptation) [17], [18] further improves
efficiency by decomposing weight updates into the product
of two low-rank matrices, enabling fine-tuning with reduced
memory overhead. Its flexibility and strong performance have
led to widespread adoption and motivated variants such as
AdaLoRA, which dynamically adjusts the parameter budget
based on training needs. (iii) Other recent efforts explore op-
timizing LoRA across dimentions such as layer selection [19],
initialization [20], and merging strategies [21]. Our work
adopts LoRA as the default PEFT method due to its simplicity,
strong empirical performance across diverse downstream tasks,
and compatibility with distributed training frameworks.

B. Federated Fine-Tuning of LLMs

Federated fine-tuning of LLMs offers a promising solution
for preserving data privacy while enabling collaborative learn-
ing across decentralized datasets, particularly in on-device
LLM systems where heterogeneous edge devices [3], [4]. (i)
Early works such as FedIT integrated LoRA-based PEFT into
the federated learning framework, demonstrating its practi-
cality [22]. However, its limited support for heterogeneous
LoRA configurations restricts scalability in real-world deploy-
ments. (ii) Subsequent approaches attempted to address this
by zero-padding LoRA modules [23], [24], incurring extra
computation and communication overhead, and by separately
averaging LoRA’s decomposed matrices, which introduced
aggregation noise. (iii) Other research has improved LoRA’s
utility in FL through sparse initialization [25], SVD-based
heterogeneity mitigation [26], and communication-efficient
optimization [27]. While these methods improve efficiency
and generalization, federated training remains vulnerable to
privacy threats such as membership inference attacks [8], [9],
despite keeping raw data on-device. Integrating differential
privacy (DP) into the federated fine-tuning process is therefore

a critical direction to provide protection guarantee against such
leakage risks.

III. PRELIMINARY

Our proposed DP-FedLoRA framework builds upon the
federated LoRA model. In this section, we first present the
formulation of federated LoRA as a foundation before intro-
ducing our DP-FedLoRA approach.

A. Low-Rank Adaptation (LoRA)

LoRA fine-tunes large pre-trained models by introducing a
low-tank decomposition into specific weight matrices without
updating the original weights [28]. Let W ∈ Rm×n be a
pre-trained weight matrix in a neural network layer. Instead
of directly updating W , LoRA keeps it frozen and adds a
trainable low-rank matrix ∆W , such that the update weight
becomes W ′ = W + ∆W . The low-rank matrix ∆W is
parameterized as ∆W = BA, where B ∈ Rm×r and
A ∈ Rr×n. This factorization drastically reduces the number
of trainable parameters from m× r to (rd+ rk). Finally, the
fine-tuned weight W ′ will be

W ′ = W +BA. (1)

In the forward pass, for an input vector x ∈ Rn, the
transformed output becomes y = Wx + BAx, where Wx
is computed using the frozen base model weights, and BAx
is the low-rank adaptation term learned during fine-tuning.
This approach maintains the integrity of the pre-trained model
while allowing task-specific adaptation with a small number
of additional parameters.

B. Federated LoRA

Federated LoRA scheme provides a privacy-aware
and communication-efficient mechanism for fine-tuning
LLMs [22]. Supposing that in a federated learning framework
consisting of K clients, each client holds a private dataset
Dk and collaboratively fine-tunes a shared pre-trained LLM.
The base weight matrix W ∈ Rm×n in the LLM remains
frozen across all clients. Instead of updating W directly,
each client k ∈ {1, 2, · · · ,K} learns a low-rank adaptation
∆Wk = BkAk, where Bk ∈ Rm×rk and Ak ∈ Rrk×n.
This approach ensures minimal parameter overhead on
resource-constrained edge devices. During local training, each
client computes the adapted weight as

W ′
k = W +BkAk, (2)

where the matrices Bk and Ak are the parameters trained
based on its local data Dk. After a predefined number of local
epochs, each client sends its learned low-rank matrices Bk and
Ak to central server. The server performs a secure aggregation
by using the stacking operation symbolized by

⊕
. Then, we

can formalize the aggregation of LoRA modules. The sum of
the products of K LoRA module pairs is equivalent to the
product of their stacked matrices:

K∑
k=1

BkAk = (B1

⊕
· · ·

⊕
BK)(A1

⊕
· · ·

⊕
AK), (3)



where (B1

⊕
· · ·

⊕
BK) indicates each Bk is horizontally

stacked to the right one before it, and (A1

⊕
· · ·

⊕
AK)

indicates that each Ak is vertically stacked below the pre-
ceding one. Once aggregated, the central server broadcasts
the updated B ∈ Rm×

∑K
k=1 rk and A ∈ R

∑K
k=1 rk×n to all

clients, allowing them to update their models as

W ′
k = W +BA, (4)

where B = (B1

⊕
· · ·

⊕
BK) and A = (A1

⊕
· · ·

⊕
AK).

The aforementioned federated learning framework enables
each client to adapt the model to its local context while
contributing to a globally improved adaptation layer, making
it ideal for real-time, on-device LLMs across distributed,
resource-limited devices.

IV. THREAT MODEL

In federated learning, although raw data never leaves the
client side, the exchanged model updates can still leak sen-
sitive information. One critical threat is the Membership
Inference Attack (MIA), where an adversary attempts to infer
whether a particular data sample was used in the local training
of a participating client. We consider a semi-honest server that
follows the federated protocol but may attempt to perform
MIA on received updates. Specifically, in the LoRA-based
federated setting, each client k ∈ {1, . . . ,K} computes a
low-rank adaptation ∆Wk = BkAk, where Bk ∈ Rm×rk and
Ak ∈ Rrk×n, based on its private dataset Dk. These matrices
are transmitted to a central server for aggregation. In MIA
scenario, let Dk and D′

k be two neighboring datasets differing
in at most one sample. The goal of the attacker is to distinguish
whether the received update ∆Wk was generated using Dk or
D′

k. Formally, this can be described as distinguishing between
the outputs of two mechanisms:

M(Dk) = ∆Wk = BkAk; M(D′
k) = ∆W ′

k = B′
kA

′
k.

(5)
An effective MIA [29], [30] implies that the attacker can
exploit differences in ∆Wk to infer the presence of specific
data points, which violates data confidentiality and causes data
privacy leakage.

V. DP-FEDLORA

In this work, to enhance privacy in federated LoRA and
defend against membership inference attacks, we incorporate
differential privacy into the training process, making it diffi-
cult for MIA to distinguish between the outputs of the two
mechanisms defined in Eq. 5. Each client k ∈ {1, 2, · · · ,K}
holds local data Dk and independently fine-tunes the low-
rank adaptation matrices Bk ∈ Rm×rk and Ak ∈ Rrk×n,
while keeping the base model weight matrix W ∈ Rm×n

frozen. After local training, each client obtains an update
∆Wk = BkAk which is not shared directly to preserve
privacy. Instead, we ensure that the shared updates satisfy
(ϵ, δ)-differential privacy through noise perturbation. Before
transmitting the local LoRA matrices to the server, each
client clips their updates to control sensitivity and then adds

Gaussian noise. Specifically, for each client k, the matrices
Bk and Ak are first individually clipped such that:

||Bk||F ≤ CBk
, ||Ak||F ≤ CAk

, (6)

where || · ||F denotes the Frobenius norm, and CBk
, CAk

are predetermined clipping thresholds. After clipping, noise
sample from isotropic Gaussian distributions is added to each
matrix:

B̃k = Bk +N (0, σ2
Bk

I); (7)

Ãk = Ak +N (0, σ2
Ak

I); (8)

where σ2
Bk

and σ2
Ak

are noise variances calibrated to the
desired privacy budget (ϵ, δ) and I denotes the identity matrix.

To be specific, the differential privacy guarantee is charac-
terized by privacy budget (ϵ, δ). For the Gaussian mechanism,
the standard result states that a mechanism with l2-sensitivity
S and Gaussian noise of standard deviation σ satisfies (ϵ, δ)-
DP if

σ ≥ S ·
√

2 log(1.25/δ)/ϵ. (9)

In our case, the sensitivity of each matrix is bounded by the
Frobenius norm due to clipping: SBk

= CBk
and SAk

= CAk
.

Therefore, the noise levels must

σBk
≥ CBk

·
√
2 log(1.25/δ)/ϵBk

; (10)

σAk
≥ CAk

·
√

2 log(1.25/δ)/ϵAk
; (11)

where ϵBk
and ϵAk

are the target privacy budgets for B̃k and
Ãk, respectively.

These perturbed matrices B̃k and Ãk are then sent to the
server for aggregation. Instead of directly summing the client
updates as in traditional federated averaging, we apply a
structured stacking operation to combine the low-rank matrices
across clients. More specifically, each client sends its clipped
and noise-perturbed matrices B̃k ∈ Rm×rk and Ãk ∈ Rrk×n

to the central server. The server then constructs the global low-
rank adaptation matrices B̃ ∈ Rm×r and Ã ∈ Rr×n, where
r =

∑K
k=1 ri, by horizontally stacking the B̃ks and vertically

stacking the Ãks as follows:

B̃ = (B̃1

⊕
· · ·

⊕
B̃K); (12)

Ã = (Ã1

⊕
· · ·

⊕
ÃK). (13)

This aggregation strategy preserves the low-rank structure of
each client’s update while allowing flexible integration of
variable-rank adaptations across clients. The resulting global
update B̃Ã represents a unified adaptation module that en-
codes contributions from all clients while maintaining privacy
through injected noise. This update is broadcast back to each
client, allowing them to locally reconstruct the global fine-
tuned model as:

W ′
k = W + B̃Ã. (14)

By structuring the aggregation in this way, our proposed DP-
FedLoRA maintains model compatibility across clients while
enabling scalable, privacy-preserving federated learning. The
pseudocode of the DP-FedLoRA algorithm is described in
Algorithm 1.



Algorithm 1 DP-FedLoRA: Differentially Private Federated
LoRA Fine-Tuning

Require: Pre-trained base model weight W ∈ Rm×n, number
of clients K, noise scales σBk

, σAk
, clipping thresholds

CBk
, CAk

, local data {Dk}Kk=1

Ensure: Global LoRA update W ′ = W + B̃Ã
for each client k = 1 to K in parallel do

Initialize Bk ∈ Rm×rk , Ak ∈ Rrk×n

Train Bk, Ak on local data Dk with W frozen
Clip: Bk ← Bk ·min(1,

CBk

∥Bk∥F
)

Clip: Ak ← Ak ·min(1,
CAk

∥Ak∥F
)

Add Gaussian noise: B̃k = Bk +N (0, σ2
Bk

I)

Add Gaussian noise: Ãk = Ak +N (0, σ2
Ak

I)

Send B̃k and Ãk to server
end for
Server aggregates:

B̃ ← (B̃1

⊕
· · ·

⊕
B̃K) ▷ Horizontal stacking

Ã← (Ã1

⊕
· · ·

⊕
ÃK) ▷ Vertical stacking

Broadcast B̃ and Ã to all clients
for each client k = 1 to K do

Update local model: W ′
k = W + B̃Ã

end for

VI. ANALYSIS OF NOISE IN DP-FEDLORA

In this section, we present an expectation and variance
analysis of the impact of Gaussian noise on LoRA-based
federated fine-tuning within the DP-FedLoRA framework,
providing practical guidance for privacy-budget calibration.

A. Expectation Analysis of Gaussian Noise in DP

For simplicity, in DP-FedLoRA, we can treat B̃ = B+β and
Ã = A+ α, where B ∈ Rm×r and A ∈ Rr×n are the clean
low-rank components obtained from local fine-tuning, and β ∈
Rm×r, α ∈ Rr×n are Gaussian noise matrices sampled from
isotropic distributions:

β ∼ N (0, σ2
βI), α ∼ N (0, σ2

αI), (15)

which are general notations for the additive noise in the
aggregated LoRA matrices at the server side after receiving
and stacking the clients’ noise-injected updates. Assume that β
and α are mutually independent and also independent of B and
A. Then we investigate the expectation difference between the
noise-injected low-rank matrix product B̃Ã and the original
product BA in the following.

To understand how the injected noise influences the fine-
tuning process, we analyze the expectation of the difference
between the noise-perturbed and original updates. Specifically,
we aim to compute E[B̃Ã]−E[BA], which becomes E[(B +
β)(A+α)]−E[BA] after substituting the perturbed matrices.

Expanding the product yields (B+β)(A+α) = BA+Bα+
βA+ βα. Taking the expectation of both sides, we have:

E[(B+β)(A+α)] = E[BA]+E[Bα]+E[βA]+E[βα]. (16)

Given that both α and β are independent zero-mean Gaussian
noise matrices and are independent of the model parameters
B and A, the cross terms vanish. Specifically,

E[Bα] = B · E[α] = 0; (17)

E[βA] = E[β] ·A = 0; (18)

E[βα] = 0, (19)

due to the independence and zero-mean properties. As a result,
we conclude that E[B̃Ã] = E[BA], and hence the expected
update difference is zero:

E[B̃Ã]− E[BA] = 0. (20)

This analysis shows that the noise-injected update remains
unbiased in expectation. Although individual updates may
deviate due to the stochastic noise, the average behavior of
the aggregated updates aligns with the original non-private
adaptation. Thus, the differential privacy mechanism in DP-
FedLoRA does not introduce bias into the global model
updates, maintaining the performance of federated fine-tuning.

B. Variance Analysis of Gaussian Noise in DP

While the expectation of the noise-injected low-rank adap-
tation B̃Ã remains unbiased with respect to the original
adaptation BA, the introduction of Gaussian noise inevitably
increases the variance in the learned model update. To under-
stand this impact, we analyze the total variance introduced by
the noise. We start by expanding the noise-injected adaptation
as:

Var[B̃Ã] = Var[BA+Bα+ βA+ βα]. (21)

Assuming that the noise terms α and β are independent, zero-
mean Gaussian matrices and are also independent of A and B,
the cross-covariance terms in the variance expansion vanish.
This simplifies the total variance to the sum of variances of
individual components:

Var[B̃Ã] = Var[Bα] + Var[βA] + Var[βα]. (22)

First, we consider Var[Bα]. Since α ∼ N (0, σ2
αI) and B

is fixed, the resulting variance is linearly proportional to the
Frobenius norm of B:

Var[Bα] ≤ mσ2
α · ∥B∥2F . (23)

Next, for Var[βA], since β ∼ N (0, σ2
βI) and A is fixed, the

resulting variance is similarly:

Var[βA] ≤ nσ2
β · ∥A∥2F . (24)

Lastly, for the composite term Var[βα], the product of two
independent Gaussian matrices yields a variance that depends
on both noise scales and the shared inner dimension r of the
low-rank decomposition:

Var[βα] ≤ σ2
βσ

2
α ·mnr. (25)

By combining these three terms, we obtain a total bound for
the variance of the noise-injected update:

Var[B̃Ã] ≤ mσ2
α · ∥B∥2F + nσ2

β · ∥A∥2F + σ2
βσ

2
α ·mnr. (26)



This bound highlights that the noise level σ must be
carefully chosen in relation to the Frobenius norms of the
adaptation matrices B and A, as well as the overall model
dimensions, to avoid excessive update variance. Additionally,
the compound error term σ2

βσ
2
α ·mnr reveals how the structure

of LoRA amplifies variance in high-rank and high-dimension
models.

Based on the above analysis of updates in DP-FedLoRA,
we can understand how the model’s loss is affected by using
noisy updates instead of clean ones. Since the added noise
is zero-mean and independent, it does not alter the expected
output, keeping the average prediction unbiased. However,
it introduces additional fluctuations, increasing the variance
in model performance. This variance is influenced by the
noise scale, model size, and the structure of the low-rank
adaptation. Larger models or higher noise levels result in
greater prediction variability.

VII. EXPERIMENT

In this section, we first describe our experimental setup
and then present comprehensive results to demonstrate the
effectiveness of our proposed DP-FedLoRA framework, along
with key findings derived from its evaluation. The code for
all our experiments is available at: https://github.com/ahahnut/
DP-FedLoRA.

A. Experiment Settings

We describe our experimental settings from three aspects:
datasets, baseline methods, and training details.

1) Datasets: We use the Alpaca-GPT-4 dataset for train-
ing, which is generated using GPT-4 via the Self-Instruct
framework. During training, we simulate a federated learning
environment with 20 clients and randomly sample 2 clients
per round. These selected clients collectively hold a total
of 20,000 data samples. For evaluation, we consider close-
ended benchmarks only. The close-ended benchmarks include
MMLU (knowledge) [31], BBH (reasoning) [32], and CRASS
(counterfactual reasoning) [33].

2) Baselines: To gain deeper insights into the performance
of existing federated learning (FL) baselines in the context
of LLMs and to establish a more comprehensive evaluation
framework, we implement seven representative FL algorithms.
Specifically, we integrate FedAvg [34], FedProx [35], SCAF-
FOLD [36], FedAvgM [37], FedAdagrad [38], FedYogi [39],
and FedAdam [40]. Among these, FedProx and SCAFFOLD
are designed to address data heterogeneity by incorporating
local model correction mechanisms. In contrast, FedAvgM,
FedAdagrad, FedYogi, and FedAdam introduce server-side
momentum or adaptive optimization to stabilize global model
updates.

3) Default Training Details: For setting a consistent
baseline across different experimental settings, a quantized
LLaMA-2-7B model is used to boost memory and computation
efficiency. The federated fine-tuning process is carried out
over 200 rounds of communication using a single NVIDIA
A100 GPU. Every participant client of this effort undergoes

10 rounds of local updates per communication round, using the
AdamW optimizer. A cosine learning rate schedule is followed
through rounds, along with a linear decay of the learning rate
from 5 × 10−5 to 1 × 10−6. The maximum length of the
sequence of inputs is limited to 512 tokens, while each client
has a local batch size of 16. To enable parameter-efficient fine-
tuning, Low-Rank Adaptation (LoRA) is used with a rank of
32 and scaling factor α = 64.

B. Ablation Study

We performed the ablation study only on the FedAvg
algorithm, sweeping the differential privacy parameter ε and
the clip norm which is illustrated in Fig.1. This choice was
motivated by the fact that similar phenomena emerged for
other optimization algorithms and hence the choice of FedAvg
was representative enough to analyze. The main goal of this
study was to analyze how differential privacy hyperparameters
affect model convergence and overall model stability during
training.

As shown in Fig.1a, when the value of ε varied while keep-
ing a minimum and fixed clipping norm of 0.1, an increment
in values of ε consistently produced improved convergence
behavior, which is reflected by lower average losses throughout
all iterations of training. Among all settings tested, an ε
value of 25.0 resulted in the most stable performance curve
with the lowest average loss curve, indicating that stricter
privacy constraints (i.e., a larger value of ε) help maintain
more relevant information from gradients even when there
is greater differential privacy noise. On the contrary, using
stricter privacy parameters (e.g., ε= 5.0 or 10.0) resulted in
significantly noisier and less stable performance measures,
thus proving the trade-off between intrinsic privacy and model
effectiveness. Besides, Fig. 1b shows the same comparison for
clip norm 1.0, which exhibits a larger average training loss
across all values of ε when compared to the configuration
with a clip norm of 0.1.

Furthermore, we also sought to further test the impact of
clipping’s norm gradient by keeping ε to a fixed value of 15.0
and varying clip levels from 0.1 to 1.0, as shown in Fig. 1c.
Results indicated a significant reduction in performance to
correlate with rising clipping norms, together with a parallel
increase in loss values for all test conditions; namely, the
lower norm—clip = 0.1 had improved regulated gradients and
better overall convergence. As illustrated in Fig. 1d, a careful
examination between ε = 15.0 and ε = 25.0 for clip = 0.1
substantiated these findings: not only did the higher setting of
ε produce a lower final training loss, but it showed fewer and
less frequent instabilities throughout training for lower ε.

To sum up, the above results indicate that our setting of
ε = 25.0 and clip = 0.1 provides the best balance between
privacy and performance under the conditions of our experi-
mental model. Due to its improved convergence behavior and
continued lowering of loss measures, we adopted this setting as
the default for all subsequent differential privacy experiments
under our investigation.



(a) Varying ε, Clip = 0.1 (b) Varying ε, Clip = 1.0

(c) Varying Clip Norm, ϵ = 15.0 (d) ϵ = 15.0 vs ϵ = 25.0 (Clip = 0.1)

Fig. 1: Results of Ablation Study

(a) FedAvg (b) FedProx (c) SCAFFOLD (d) FedAvgM

(e) FedAdagrad (f) FedYogi (g) FedAdam

Fig. 2: Training Loss Curves of FedLLMs without Differential Privacy

(a) FedAvg (b) FedProx (c) SCAFFOLD (d) FedAvgM

(e) FedAdagrad (f) FedYogi (g) FedAdam

Fig. 3: Training Loss Curves of DP-FedLLMs with Our Proposed DP-FedLoRA (ϵ = 25.0, Clip = 0.1)



C. Performance Evaluation: FedLLM vs. DPFedLLM

To assess the effectiveness of our DPFedLoRA framework,
we compare the training loss and downstream close-end bench-
mark accuracy of models trained with and without differential
privacy for seven federated optimization algorithms: FedAvg,
FedProx, SCAFFOLD, FedAvgM, FedAdagrad, FedYogi, and
FedAdam. The differential privacy configuration is ϵ = 25.0
with a clipping norm of 0.1 for all experiments.

1) Training Loss Curves: Table I presents the average train-
ing loss after 200 communication rounds for both FedLLM and
our DPFedLLM, which are trained using the proposed DP-
FedLoRA framework, across all federated learning algorithms.
As expected, differential privacy leads to an increase in the
mean training loss due to the additive noise and clipping of
the gradients, which caps the learning potential. However,
the reduction in performance is relatively moderate for all
of the algorithms, especially in SCAFFOLD, indicating their
robustness under privacy constraints. Moreover, the training
loss curves in Fig. 2 and 3 are used to further illustrate this
trend, showing the progression of loss across 200 epochs
without and with differential privacy, respectively. Due to
gradient clipping and added Gaussian noise, the DP-FedLoRA
models exhibit slower convergence and higher loss values
overall.

As seen in Fig. 3d, when operating under the differential
privacy setting, FedAvgM shows an elevated training loss in
the first rounds—up to about 8.0—before converging sharply
to about 1.0. Such an effect is not seen in other methods.
Such an anomaly can be explained by the combination of the
effect of momentum and the added differential privacy noise,
coupled with aggressive clipping (clip norm = 0.1). Since
prior gradients are accumulated by FedAvgM, the effect of
noisy gradients in the first rounds can be compounded, causing
divergence-like behavior. Even though this spike does not lead
to divergence, the model eventually converges. However, this
effect suggests that FedAvgM is possibly more sensitive to
privacy parameters compared to other methods.

TABLE I: Training Loss Comparison of FedLLM and
DPFedLLM after 200 Communication Rounds (ε = 25.0, Clip
= 0.1)

Algorithm FedLLM Loss DPFedLLM Loss
FedAvg 0.8362 0.9868
FedProx 0.8370 0.9890
SCAFFOLD 0.8384 0.9815
FedAvgM 0.8400 1.0003
FedAdagrad 0.8364 0.9866
FedYogi 0.8524 0.9942
FedAdam 0.8504 0.9929

2) Evaluation on Close-ended Benchmarks: Table II sum-
marizes the performance results, in terms of test scores,
across different federated learning methods in both non-private
(Non-DP) and differentially private (DP) (i.e., our proposed
DP-FedLoRA framework) setups over three prominent close-
end benchmarking tasks: MMLU, BBH, and CRASS. These
benchmarking tasks aim to measure a wide range of skills,

from factual knowledge to reasoning abilities, and common-
sense reasoning. Differential privacy seems to have little
effect on model efficacy, as indicated by the relatively small
decreases in MMLU and BBH performance, with average
score reductions of approximately 4–5% across all algorithms.
For example, the MMLU value for FedAvg goes from 44.64%
(Non-DP) to 42.45% (DP), while that for BBH drops from
38.96% to 38.52%. this implies that private training method-
ologies can be used without affecting the model in scenarios
that require reasoning knowledge.

In contrast, a more prominent reduction in performance is
reported on the CRASS benchmark when differential privacy
(DP) is introduced, suggesting that commonsense reasoning
tasks are especially vulnerable to interference introduced by
differential privacy. Still, this reduction is within a range (i.e.,
from 40.90% to 25.00%, i.e., FedProx), which suggests that
differentially private federated learning should be improved in
the counterfactual reasoning LLMs. To conclude, our findings
show our proposed DP-FedLoRA can be an effective method
to fine-tune LLMs while protecting data privacy.

TABLE II: Evaluation Scores of Federated Learning Algo-
rithms with and without Differential Privacy(DP)

Algorithm Privacy MMLU BBH CRASS
FedAvg Non-DP 44.64 38.96 38.09
FedAvg DP 42.45 38.52 22.73
FedProx Non-DP 44.70 38.79 40.90
FedProx DP 41.92 37.33 25.00
SCAFFOLD Non-DP 43.68 39.88 29.54
SCAFFOLD DP 41.92 37.70 25.00
FedAvgM Non-DP 42.07 38.29 38.64
FedAvgM DP 42.57 37.48 20.45
FedAdagrad Non-DP 44.94 39.67 31.82
FedAdagrad DP 42.58 37.07 22.28
FedYogi Non-DP 44.63 38.52 34.09
FedYogi DP 41.57 37.70 22.73
FedAdam Non-DP 44.95 38.63 36.36
FedAdam DP 42.35 38.59 20.45

D. Impact of Rank in DP-FedLoRA

To investigate how the Low-Rank Adaptation (LoRA) rank
affects the behavior of noise introduced in our proposed
DP-FedLoRA framework, experiments were performed with
FedAvg as the base aggregation algorithm with a LLaMA2-
7B model, having the privacy budget ε constant at 25.0, the
clipping norm being 0.1, and the LoRA alpha α being 128.
The only tunable hyperparameter was the LoRA rank, tested
at the values {8, 16, 32, 64, 128} using the aggregation method
of FedAvg. During these experimental processes, statistical
properties of the noise-influenced updates were tracked, with
a specific focus on their expectation and variance across the
communication rounds.

In Fig. 5, our experimental results show that the ex-
pectation difference (E[∆̃]) between the noise-injected and
original updates remained near zero throughout the training
process across all LoRA ranks as indicated in the Eq.(20),
thus establishing the evidence that the differential privacy
mechanism introduced unbiased noise, which is independent



(a) MMLU Score

(b) BBH Score

(c) CRASS Score

Fig. 4: Performance scores of FedLLMs and DPFedLLMs for
MMLU, BBH, and CRASS benchmarks

of LoRA configuration. This also confirms that average update
behaviors are consistent with those derived for non-private
learning, thereby preserving the correctness of the federated
optimization trajectory in the limit.

Besides, as illustrated in Fig. 5, the variance (Var[∆̃]) of the
updates showed an upward trend corresponding to the rank of
LoRA. To be specific, the variances observed were around
37 at rank 8, 75 at rank 16, 150 at rank 32, 300 at rank
64, and 600 at rank 128. This regular monotonic increase in
variance is consistent with the previously derived theoretical
upper bound, particularly the term σ2

βσ
2
α ·mnr from Eq.(26),

showing linear growth with the inner rank r. Therefore, higher
rank adaptations naturally increase the scale of the noise,
regardless of the noise scale and clipping parameter constancy.

Notably, while there is a common trend of variance growth
with respect to LoRA rank, variations and occasional spikes

(a) Rank 8

(b) Rank 16

(c) Rank 32

(d) Rank 64

(e) Rank 128

Fig. 5: Expectation Value E[∆̃] and Variance Var[∆̃] of Noisy
updates in DP-FedLoRA with Various Ranks



in variance in Fig. 5 were also identified throughout training
across all ranks. Such spikes are identified as nonsystematic;
that is, they can be caused by differences in the gradient dis-
tributions between clients, particularly when the participating
clients have heterogeneous data or model states. In federated
learning setups, such non-IID scenarios where clients hold
diverse and potentially skewed data distributions, can easily
cause occasional spikes in both sensitivity and variability of
norms, which in turn affects the amount of noise injected
in each iteration even in cases where clipping mechanisms
are used. Thus, such spikes are viewed as a natural effect of
the dynamic, decentralized, and data-heterogeneous nature of
federated optimization in differential privacy settings.

From Table III, we can also conclude that while our pro-
posed DP-FedLoRA framework promises unbiased updates, an
increase in the adaptation rank significantly raises the noise
variance. This trade-off between expressiveness and stability
requires careful adjustment to maintain an efficient balance
between privacy and utility in practical applications.

TABLE III: Converged Expectation Value E[∆̃] and Variance
Var[∆̃] of Noisy updates in DP-FedLoRA with Various Ranks

LoRA Rank Expectation (E[∆̃]) Variance (Var[∆̃])

8 −2.38× 10−8 37.88
16 −4.27× 10−9 75.75
32 1.04× 10−8 151.47
64 1.26× 10−8 302.92

128 −1.36× 10−8 605.82

E. Impact of Parameter Size in DP-FedLoRA

To evaluate the effect of model size on the statistical
properties of noise during federated fine-tuning, we performed
a comparative study of both the LLaMA-2-7B and LLaMA-
2-13B under the same training setup. This setup used the
FedAvg aggregation method, had a constant LoRA rank of
32, a privacy budget of ε = 25.0, a clipping norm of 0.1, and
a LoRA scaling factor α = 128. All other settings remained
unchanged.

As shown in Fig.6, E[∆̃] values in all communication rounds
indicates the addition of noise is unbiased regardless of the
model size. However, the variance represented as Var[∆̃]
shows a considerable difference. The LLaMA-2-13B model
always shows a higher variance than the 7B model. This
increase is consistent with the theoretical bound concerning
the matrix dimensions m and n in the term σ2

βσ
2
α ·mnr, which

argues that larger models inherently increase the noise variance
while keeping the same differential privacy mechanism.

Similarly, as shown in Table IV, we observe empirical
results that confirm our theoretical findings in Section VI: the
expectation remains invariant to model size, while the variance
increases with larger model sizes.

VIII. CONCLUSION

In this paper, we proposed DP-FedLoRA, a privacy-
enhanced federated fine-tuning framework for on-device

(a) LLaMA-2-7B (DP-FedLoRA with Rank = 32)

(b) LLaMA-2-13B (DP-FedLoRA with Rank = 32)

Fig. 6: Expectation E[∆̃] and Variance Var[∆̃] of Noisy Up-
dates in Our DP-FedLoRA over training rounds with Different
Base Models and Fixed LoRA Rank

TABLE IV: Converged Expectation E[∆̃] and Variance Var[∆̃]
of Noisy Updates in Our DP-FedLoRA over training rounds
with Different Base Models and Fixed LoRA Rank

Base Model Expectation (E[∆̃]) Variance (Var[∆̃])
LLaMA-2 7B 1.04× 10−8 151.47

LLaMA-2 13B 2.39× 10−9 237.50

LLMs deployed on edge devices. Our approach combines
LoRA-based parameter-efficient adaptation with differential
privacy to safeguard sensitive local data while preserving the
performance of federated LLMs. To be specific, we introduced
a structured noise injection and aggregation mechanism that
enforces differential privacy on client updates and supports
heterogeneous adaptation ranks. Additionally, we provided a
theoretical analysis demonstrating the unbiased nature and
bounded variance of noise-injected updates, offering practical
guidance for privacy-budget calibration in federated fine-
tuning. Finally, extensive experiments on real-world LLM
benchmarks validate that DP-FedLoRA achieves strong pri-
vacy guarantees with minimal performance loss, presenting
a scalable and effective solution for privacy-preserving LLM
deployment in edge devices.
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